对口 高考 高中数学必修1、4知识点归纳.doc
《对口 高考 高中数学必修1、4知识点归纳.doc》由会员分享,可在线阅读,更多相关《对口 高考 高中数学必修1、4知识点归纳.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学知识点第一章、集合与函数概念1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。2、 只要构成两个集合的元素是一样的,就称这两个集合相等。3、 常见集合:正整数集合:或,整数集合:,有理数集合:,实数集合:.4、集合的表示方法:列举法、描述法.1.1.2、集合间的基本关系1、 一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作.2、 如果集合,但存在元素,且,则称集合A是集合B的真子集.记作:AB.3、 把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.4、
2、如果集合A中含有n个元素,则集合A有个子集.1.1.3、集合间的基本运算1、 一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:.2、 一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:.3、全集、补集?1.2.1、函数的概念1、 设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.1.2.2、函数的表示法1、 函数
3、的三种表示方法:解析法、图象法、列表法.1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式: 解:任取且,则:=1.3.2、奇偶性1、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.2、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.第二章、基本初等函数()2.1.1、指数与指数幂的运算1、 一般地,如果,那么叫做 的次方根。其中.2、 当为奇数时,;当为偶数时,.3、 我们规定: ;4、 运算性质: ;.2.1.2、指数函数及其性质1、 记住图象:2.2.1、对数与对数运算1、;2、.3
4、、,.4、当时:;.5、换底公式:.6、 .2.2.2、对数函数及其性质1、 记住图象:3.1.1、方程的根与函数的零点1、方程有实根 函数的图象与轴有交点 函数有零点.2、 性质:如果函数在区间 上的图象是连续不断的一条曲线,并且有,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根.3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.第一章、三角函数1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角终边相同的角的集合: .1.1.2、弧度制1 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .3、弧长公式:.4、扇形
5、面积公式:.1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:.2、 设点为角终边上任意一点,那么:(设) ,.3、 ,在四个象限的符号和三角函数线的画法.4、 诱导公式一:(其中:)5、 特殊角0,30,45,60,90,180,270的三角函数值.1.2.2、同角三角函数的基本关系式1、 平方关系:.2、 商数关系:.1.3、三角函数的诱导公式1、 诱导公式二: 2、诱导公式三: 3、诱导公式四: 4、诱导公式五: 5、诱导公式六: 1.4.1、正弦、余弦函数的图象1、记住正弦、余弦函数图象:2、 能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最
6、小值、对称轴、对称中心、奇偶性、单调性、周期性.3、 会用五点法作图.1.4.2、正弦、余弦函数的性质1、 周期函数定义:对于函数,如果存在一个非零常数T,使得当取定义域内的每一个值时,都有,那么函数就叫做周期函数,非零常数T叫做这个函数的周期.1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、 能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.1.5、函数的图象1、 能够讲出函数的图象和函数的图象之间的平移伸缩变换关系.2、 对于函数:有:振幅A,周期,初相,相位,频率.、三角恒等变换3.1.1、两角差的余弦公式1、2、记住15的三角函数值:3.1
7、.2、两角和与差的正弦、余弦、正切公式1、2、3、4、.5、.3.1.3、二倍角的正弦、余弦、正切公式1、, 变形:.2、, 变形1:, 变形2:.3、.数列一、知识梳理 数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列的第项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即. 3.递推公式:如果已知数列的第一项(或前几项),且任何一项与它的前一项(或前几项)间的关系可以用一个式子来表示,即或,那么这个式子叫做数列的递推公式. 如数列中,其中是数列的递推公式.4.数列的前项和与通项的公式; .5. 数列的表示方法:
8、解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.递增数列:对于任何,均有.递减数列:对于任何,均有.摆动数列:例如: 常数数列:例如:6,6,6,6,.有界数列:存在正数使.无界数列:对于任何正数,总有项使得. 等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列叫做等差数列,常数称为等差数列的公差. 2.通项公式与前项和公式通项公式,为首项,为公差.前项和公式或.3.等差中项如果成等差数列,那么叫做与的等差中项.即:是与的等差中项,成等差数列.4.等差数列的判定方法定义
9、法:(,是常数)是等差数列;中项法:()是等差数列.5.等差数列的常用性质数列是等差数列,则数列、(是常数)都是等差数列;在等差数列中,等距离取出若干项也构成一个等差数列,即为等差数列,公差为.;(,是常数);(,是常数,)若,则;若等差数列的前项和,则是等差数列;当项数为,则; 当项数为,则.等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,这个数列叫做等比数列,常数称为等比数列的公比. 2.通项公式与前项和公式通项公式:,为首项,为公比 .前项和公式:当时,当时,.3.等比中项如果成等比数列,那么叫做与的等比中项.即:是与的等差中项,成等差数列.4.等比
10、数列的判定方法定义法:(,是常数)是等比数列;中项法:()且是等比数列.5.等比数列的常用性质数列是等比数列,则数列、(是常数)都是等比数列;在等比数列中,等距离取出若干项也构成一个等比数列,即为等比数列,公比为.若,则;若等比数列的前项和,则、是等比数列.第二章、平面向量2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向
11、量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.2.2.1、向量加法运算及其几何意义1、 三角形法则和平行四边形法则.2、 .2.2.2、向量减法运算及其几何意义1、 与长度相等方向相反的向量叫做的相反向量.2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规定如下: ,当时, 的方向与的方向相同;当时, 的方向与的方向相反.2、 平面向量共线定理:向量与 共线,当且仅当有唯一一个实数,使.2.3.1、平面向量
12、基本定理1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数,使.2.3.2、平面向量的正交分解及坐标表示1、 .2.3.3、平面向量的坐标运算1、 设,则: ,.2、 设,则: .2.3.4、平面向量共线的坐标表示1、设,则线段AB中点坐标为,ABC的重心坐标为.2.4.1、平面向量数量积的物理背景及其含义1、 .2、 在方向上的投影为:.3、 .4、 .5、 .2.4.2、平面向量数量积的坐标表示、模、夹角1、 设,则:2、 设,则:.立体几何基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。 公理
13、2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3: 过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面: 平行、 相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对口 高考 高中数学必修1、4知识点归纳 高中数学 必修 知识点 归纳
限制150内