人工智能原理人工智能原理 (66).pdf
《人工智能原理人工智能原理 (66).pdf》由会员分享,可在线阅读,更多相关《人工智能原理人工智能原理 (66).pdf(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Networked ModelsArtificial Intelligence5212.Models in Machine Learning 12.1.Probabilistic Models 12.2.Geometric Models 12.3.Logical Models 12.4.Networked ModelsContents:Artificial Intelligence:Learning:Models53 The networked models here refer to as the models of artificial neural network(ANN).这里的网络化
2、模型指的是人工神经网络模型(ANN)。An ANN is an artificial representation of the human brain that tries to simulate its learning processing.一个ANN是人脑的一种人工表征,试图模拟人类的学习过程。ANN can be constructed a system by interconnected“neurons”which send messages to each other.ANN可以通过互联的“神经元”构建一个系统,神经元之间相互发送消息。The connections betwee
3、n neurons have numeric weights that can be tuned based on experience,making ANN adaptive to inputs and capable of learning.神经元之间的连接具有数值权重,可以通过经验调整,使ANN适应输入并且能够学习。What are Networked Models 什么是网络化模型12.4.Networked ModelsArtificial Intelligence5412.4.Networked Models 12.4.1.Artificial Neural Networks 12
4、.4.2.Deep Neural NetworksContents:Artificial Intelligence:Learning:Models55Biological Neuron 生物神经元12.4.1.Artificial Neural NetworksInput 输入(Stimulus)刺激Output输出(Response)反应Dendrite树突Nucleus细胞核Axon轴突Synapse突触Artificial Intelligence:Learning:Models56Artificial Neuron 人工神经元12.4.1.Artificial Neural Netwo
5、rksNeuron i神经元Input 输入(Stimulus)刺激Output输出(Response)反应yiActivation Function激活函数Activation function:激活函数orx1x2x5x3x4wi1wi3wi2wi4wi5uiArtificial Intelligence:Learning:Models57Artificial Neural Network(ANN)人工神经网络12.4.1.Artificial Neural NetworksANN is a family of learning models inspired by biological
6、neural networksThe interconnection between the different layers of neuronsThe learning process for updating the weights of the interconnectionsThe activation function that converts a neurons weighted input to its outputInput 输入(Stimulus)刺激Output输出(Response)反应Hidden layers 隐藏层Input layers输入层Output la
7、yers输出层ANN是受生物神经网络启发的一系列学习模型不同的神经元层次之间互联学习过程是为了更新互联权重激活函数将神经元的加权输入转换为其输出Artificial Intelligence:Learning:Models581943,McCulloch and Pitts 马卡洛和匹茨 created a computational model for neural networks based on mathematics and algorithms called threshold logic.基于称之为阈值逻辑的数学和算法创建了神经网络的计算模型。1954,Farley and Cl
8、ark 法利和克拉克 first used computational machines,then called calculators,to simulate a Hebbian network.首次利用计算的机器、后来称其为计算器,来仿真赫布网络。1958,Rosenblatt 罗森布莱特 created perceptron,an algorithm for pattern recognition,which is with only one output layer,so also called“single layer perceptron”.创建了感知机,一种模式识别算法,它仅有一
9、个输出层,也被称为“单层感知机”。History of Artificial Neural Networks 人工神经网络的发展史12.4.1.Artificial Neural NetworksArtificial Intelligence:Learning:Models591969,Minsky and Papert明斯基和帕伯特 Published a famous book entitled“Perceptrons”.出版了一本名为“感知机”的著名书籍。It pointed in this book that the single layer perceptrons are only
10、capable of learning linearly separable patterns,but not possible to learn an XOR function.书中指出,单层感知机仅能学习线性可分模式,而不能用于学习异或功能。1974,Werbos韦伯斯 Proposed the back-propagationalgorithm,a method for training ANNs and used in conjunction with an optimization method such as gradient descent.提出了反向传播算法,一种用于训练ANN
11、s的方法,并且与梯度下降等优化方法结合使用。Regenerates interest in the 1980s.1980年代才引起重视。History of Artificial Neural Networks 人工神经网络的发展史12.4.1.Artificial Neural NetworksArtificial Intelligence:Learning:Models601989,Yann LeCunet al雅恩 勒昆等人 Published LeNet-5,a pioneering 7-level convolutional neural network(CNN)is applied
12、 to recognize hand-written numbers on checks.发表了LeNet-5,一种开拓性的7层卷积神经网络(CNN),用于检查支票上的手写数字。1992,Schmidhuber施米德胡贝 Proposed recurrent neural network(RNN),this creates an internal state which allows it to exhibit dynamic temporal behavior.提出了循环神经网络,它创建网络的内部状态,得以展现动态时间行为。2006,Hinton and Salakhutdinov辛顿和萨拉
13、赫丁诺夫 Renewed interest in neural nets was sparked by the advent of deep learning.深度学习的出现,再次引发了对神经网络的兴趣。History of Artificial Neural Networks 人工神经网络的发展史12.4.1.Artificial Neural NetworksArtificial Intelligence:Learning:Models612012,Andrew Ng and Jeff Dean吴恩达和杰夫 迪恩 Google Brain team created a neural net
14、work that learned to recognize higher-level concepts,such as cats,from watching unlabeled images.Google大脑团队创建了一个神经网络,学会观看未标注图像来识别高层次概念,例如猫。2012,Krizhevskyet al 克利则夫斯基等 With Deep CNNs won the large-scale ImageNet competition by a significant margin over shallow machine learning methods.采用深度CNNs获得了大规模
15、ImageNet比赛的胜利,比浅层学习方法有显著优势。2014,Ian Goodfellow et al伊恩 古德菲勒等 Proposed generative adversarial network(GAN)which has two neural networks competing against each other in a zero-sum game framework.提出了生成对抗网络(GAN),其中有两个神经网络,彼此以“零和”博弈方式相互竞争。History of Artificial Neural Networks 人工神经网络的发展史12.4.1.Artificial
16、Neural NetworksArtificial Intelligence:Learning:Models62Structures of Neural Networks 神经网络的结构12.4.1.Artificial Neural NetworksNeural Networks神经网络Feedforward Neural Networks前馈神经网络RecurrentNeural Networks循环神经网络Artificial Intelligence:Learning:Models63 Feedforward neural network 前馈神经网络 information move
17、s in only one direction,forward,from input nodes,through hidden nodes and to the output nodes.信息从输入结点仅仅以一个方向,即前进方向,穿过隐藏层并抵达输出节点。Recurrent neural network 循环神经网络 connections form a directed cycle.连接形成有向循环。creating an internal state of the network which allows it to exhibit dynamic temporal behavior.建立
18、网络的内部状态,使之展现动态的时间特性。Structures of Neural Network Models 神经网络模型的结构12.4.1.Artificial Neural NetworksFeedforward neural network 前馈神经网络Recurrent neural network 循环神经网络Artificial Intelligence:Learning:Models64 Back-propagation(BP)is an abbreviation for“Backward propagation of errors”.反向传播(BP)是“反向误差传播”的缩略语
19、。It is a common method of training Artificial Neural Networks,and used in conjunction with an optimization method such as gradient descent.是训练人工神经网络的常用方法,与梯度下降优化方法结合使用。The algorithm repeats a two phase cycle:该算法重复两个阶段的循环:Back-propagation 反向传播12.4.1.Artificial Neural Networksphase 1:propagation传播phas
20、e 2:weight update权值更新Repeat phase 1 and phase 2 until the performance of the network is satisfactory.重复阶段1和阶段2的操作,直到网络的性能得到满足。Artificial Intelligence:Learning:Models65 Phase 1:Propagation第1阶段:传播 Feedforward propagation前馈传播the input of training data through the neural network in order to generate out
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能原理人工智能原理 66 人工智能 原理 66
限制150内