三角函数的奇偶性与单调性.doc
《三角函数的奇偶性与单调性.doc》由会员分享,可在线阅读,更多相关《三角函数的奇偶性与单调性.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.3三角函数的奇偶性与单调性【知识网络】1正弦、余弦、正切函数的奇偶性、对称性;正弦、余弦、正切函数的的单调性【典型例题】例1(1) 已知,函数为奇函数,则a()(A)0(B)1(C)1(D)1(1)A 提示:由题意可知,得a=0(2)函数的单调增区间为()A BC D(2)C 提示:令可得(3)定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,则的值为 ( )A. B. C. D. (3)B 提示:(4)如果是奇函数,则 (4)由()已知函数满足以下三个条件: 在上是增函数以为最小正周期是偶函数试写出一满足以上性质的一个函数解析式(5)提示:答案不唯一,如还可写成等例2判断
2、下列函数的奇偶性(); (2 ) ; (3 ) ; (4 ) 解:(1)的定义域为,故其定义域关于原点对称,又为奇函数(2)时,而, 的定义域不关于原点对称,为非奇非偶函数。(3)的定义域为R,又 为偶函数。(4) 由得,又 ,故此函数的定义域为 ,关于原点对称,此时 既是奇函数,又是偶函数。例3已知:函数 (1)求它的定义域和值域; (2)判断它的奇偶性; (3)求它的单调区间; (4)判断它的周期性,若是周期函数,求它的最小正周期.解:(1).由 定义域为, 值域为(2).定义域不关于原点对称,函数为非奇非偶函数(3)的递增区间为 递减区间为(4).是周期函数,最小正周期T.例4已知函数,
3、求:(I) 函数的最大值及取得最大值的自变量的集合;(II) 函数的单调增区间解(I)当,即时, 取得最大值.函数的取得最大值的自变量的集合为. (II) 由题意得: 即: 因此函数的单调增区间为.【课内练习】1函数f(x)=sin(2x+)+cos(2x+)的图像关于原点对称的充要条件是 ()A=2k,kZ B=k,kZ C=2k,kZ D=k,kZ1D 提示: 令可得2在中,若函数在0,1上为单调递减函数,则下列命题正确的是(A) (B)(C) (D)2C 提示:根据所以3.同时具有性质“ 最小正周期是; 图象关于直线对称; 在上是增函数”的一个函数是( ) A B C D 3D 提示:由
4、性质(1)和(2)可排除 A和C ,再求出的增区间即可4设函数,若,则下列不等式必定成立的是 ()A B C D 4B提示:易知,且当x时,为增函数又由,得,故 |,于是5.判断下列函数奇偶性(1)是 ;(2)是 ; (3)f(x)=是 5(1)偶函数()非奇非偶函数()奇函数提示:先判断函数的定义域是否关于原点对称,然后用奇函数和偶函数的定义判断6.若是以5为周期的奇函数,且,则= 6 -4 提示:五个函数中,同时满足且的函数的序号为7提示:不满足不满足8求下列函数的单调区间.(1) (2) 解:(1).原函数变形为令,则只需求的单调区间即可.,()上即,()上单调递增,在,上即,上单调递减
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 奇偶性 调性
限制150内