一元二次方程 一元二次方程的概念.doc
《一元二次方程 一元二次方程的概念.doc》由会员分享,可在线阅读,更多相关《一元二次方程 一元二次方程的概念.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、23.1.1 一元二次方程教学目标:1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式(0)2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。3、会用试验的方法估计一元二次方程的解。重点难点:1一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。2 理解用试验的方法估计一元二次方程的解的合理性。教学方法:三疑三探教学过程: 一 、设疑自探:自探一 1绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的
2、长和宽各为多少?分析:设长方形绿地的宽为x米,不难列出方程x(x10)900整理可得:x210x900=0.(1)自探二 2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1x)万册;同样,明年年底的图书数又是今年年底的(1x)倍,即5(1x)(1x)5(1x)2万册.可列得方程5(1x)2=7.2,整理可得:5x210x2.2=0.(2)二、 解疑合探: 思考、讨论 这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两
3、个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?( 学生分组讨论,然后各组交流 )共同特点:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2 一元二次方程的概念 上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:ax2bxc0(a、b、c是已知数,a0)。 其中叫做二次项,叫做二次项系数;叫做一次项,叫做一次项系数,叫做常数项。.三、质疑再探:同学们还有什么问题或疑问?四、拓展运用:1例1下列方程中哪些是一元二次方程?试说明理由。(1) (2) (3) (4) 2例2 将下列方程化为一般形
4、式,并分别指出它们的二次项系数、一次项系数和常数项:1) 2)(x-2)(x+3)=8 3) 3例3 方程(2a4)x2 2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?本题先由同学讨论,再由教师归纳。解:当2时是一元二次方程;当2,0时是一元一次方程;4例4 已知关于x的一元二次方程(m-1)x2+3x-5m+4=0有一根为2,求m。分析:一根为2即x=2,只需把x=2代入原方程。五、巩固练习: 练习一 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项 2x(x-1)=3(x-5)-4 练习二 关于的方程,在什么条件下是一元二次方程
5、?在什么条件下是一元一次方程?本课小结:1、只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。2、一元二次方程的一般形式为(0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。3、在实际问题转化为数学模型( 一元二次方程 ) 的过程中,体会学习一元二次方程的必要性和重要性。布置作业:课本第27页习题1、2、3教学反思:23.2.2一元二次方程的解法教学目标:1、会用直接开平方法解形如(a0,ab0)的方程;2、灵活应用因式分解法解一元二次方程。3、使学生了解转化的思想在解方程中的应用,渗透换远方法。重点难点:合理选择直接开平方法
6、和因式分解法较熟练地解一元二次方程,理解一元二次方程无实根的解题过程。教学方法:三疑三探教学过程:一、设疑自探解疑合探:问:怎样解方程的?让学生说出作业中的解法,教师板书。解:1、直接开平方,得x+1=16所以原方程的解是x115,x2172、原方程可变形为方程左边分解因式,得(x+1+16)(x+116)=0即可(x+17)(x15)=0所以x17=0,x15=0 原方程的解为: x115,x217二、质疑再探:同学们还有什么问题或疑问?三、拓展运用:1、例1 解下列方程 (1)(x1)240; (2)12(2x)290.分析两个方程都可以转化为(a0,ab0)的形式,从而用直接开平方法求解
7、.解(1)原方程可以变形为(x1)24,直接开平方,得:x12. 所以原方程的解是x11,x23.原方程可以变形为_,有_.所以原方程的解是x1_,x2_.2、说明:(1)这时,只要把看作一个整体,就可以转化为(0)型的方法去解决,这里体现了整体思想。四、巩固练习:练习一: 解下列方程:(1)(x2)2160; (2)(x1)2180;(3)(13x)21; (4)(2x3)2250. 练习二:解下列方程 (1)(x+2)2=3(x+2) (2)2y(y-3)=9-3y (3)( x-2)2 x+2 =0 (4)(2x+1)2=(x-1)2 (5)。五、本课小结:本节你学到了什么知识?有什么收
8、获?(老师先引导学生小结,再进行总结)1、对于形如(a0,a0)的方程,只要把看作一个整体,就可转化为(n0)的形式用直接开平方法解。 2、当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解。布置作业:课本第37页习题1(5、6)、P38页习题2(1、2)教学反思:23.2.3一元二次方程的解法教学目标:1、掌握用配方法解数字系数的一元二次方程2、使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程。3在配方法的应用过程中体会 “转化”的思想,掌握一些转化的技能。重点难点: 使学生掌握配方法,解一元二次方程。把一元二次方程转化为教学方法:三疑三探教学过程:一、设
9、疑自探解疑合探: 1.解下列方程,并说明解法的依据: (1) (2) (3) 通过复习提问,指出这三个方程都可以转化为以下两个类型:根据平方根的意义,均可用“直接开平方法”来解,如果b 0,方程就没有实数解。如请说出完全平方公式。 。 2.引入新课我们知道,形如的方程,可变形为,再根据平方根的意义,用直接开平方法求解那么,我们能否将形如的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题二、质疑再探:同学们还有什么问题或疑问?三、拓展运用:1、例1、解下列方程:(1)2x5; (2)4x30.思考能否经过适当变形,将它们转化为 = a 的形式,应用直接开方法求解?解(1)原方程化为2x
10、16, (方程两边同时加上1)_, _, _.(2)原方程化为4x434 (方程两边同时加上4)_, _, _.归纳 上面,我们把方程4x30变形为1,它的左边是一个含有未知数的完全平方式,右边是一个非负常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.注意到第一步在方程两边同时加上了一个数后,左边可以用完全平方公式从而转化为用直接开平方法求解。那么,在方程两边同时加上的这个数有什么规律呢?例2、 用配方法解下列方程:(1)6x70; (2)3x10.四、巩固练习:1.试一试:对下列各式进行配方:; ; ;通过练习,使学生认识到:配方的关键是在方程两边同时添加的常数
11、项等于一次项系数一半的平方。2、练习:.填空:(1) (2)8x( )(x- )2(3)x( )(x )2; (4)46x( )4(x )2 用配方法解方程:(1)8x20 (2)5 x60. (3) 本课小结:本节你学到了什么知识?有什么收获?(老师先引导学生小结,再进行总结) 配方法解一元二次方程的步骤:1、把常数项移到方程右边,用二次项系数除方程的两边使新方程的二次项系数为1;2、在方程的两边各加上一次项系数的一半的平方,使左边成为完全平方;如果方程的右边整理后是非负数,用直接开平方法解之,如果右边是个负数,则指出原方程无实根。布置作业:P38页习题2.(3)、(4)、(5)、(6),3
12、,4.(1)、(2)教学反思:23.2 .4一元二次方程的解法教学目标: 1、使学生熟练地应用求根公式解一元二次方程。2、使学生经历探索求根公式的过程,培养学生抽象思维能力。3、在探索和应用求根公式中,使学生进一步认识特殊与一般的关系,渗透辩证唯物广义观点。重点难点:1、难点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程;2、重点:对文字系数二次三项式进行配方;求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误。教学方法:三疑三探教学过程:一、设疑自探解疑合探1、用配方法解下列方程: (1) (2)2、用配方解一元二次方程的步骤是什么?3、用直接开平方法
13、和配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、质疑再探:问题1:能否用配方法把一般形式的一元二次方程转化为呢?教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让学生分组讨论交流,达成共识: 因为,方程两边都除以,得 移项,得配方,得 即问题2:当,且时,大于等于零吗? 让学生思考、分析,发表意见,得出结论:当时,因为,所以,从而。问题3:在研究问题1和问题2中,你能得出什么结论? 让学生讨论、交流,从中得出结论,当时,一般形式的一元二次方程的根为,即。 由以上研究的结果,得到了一元二次方程的求根公式: () 这个公式说明方程的根是由
14、方程的系数、所确定的,利用这个公式,我们可以由一元二次方程中系数、的值,直接求得方程的解,这种解方程的方法叫做公式法。 思考:当时,方程有实数根吗?三、拓展运用:例1、解下列方程: 1、; 2、;3、; 4、教学要点:(1)对于方程(2)和(4),首先要把方程化为一般形式;(2)强调确定、值时,不要把它们的符号弄错;(3)先计算的值,再代入公式。 例2、(补充)解方程 解:这里, 因为负数不能开平方,所以原方程无实数根。让学生反思以上解题过程,归纳得出:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根。四、课堂巩固: 1、35练习。 2、阅读39“阅读材料”。
15、五、课堂小结: 根据你学习的体会,小结一下解一元二次方程一般有哪几种方法?通常你是如何选择的?和同学交流一下。作业设计:38习题4.(3)、(4)、(5)、(6)、(7)、(8),5。教学反思:23.2 .5一元二次方程的解法教学目标: 1、使学生能根据量之间的关系,列出一元二次方程的应用题。2、提高学生分析问题、解决问题的能力。3、培养学生数学应用的意识。重点难点:认真审题,分析题中数量关系,适当设未知数,寻找等量关系,布列方程是本节课的重点,也是难点。教学方法:三疑三探教学过程:一、设疑自探:1、用多种方法解方程让学生尝试用多种方法解方程,归结为:解法1:将方程化为,直接开平方,得 解得,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元二次方程 一元二次方程的概念 一元 二次方程 概念
限制150内