AP微积分课程设计.docx





《AP微积分课程设计.docx》由会员分享,可在线阅读,更多相关《AP微积分课程设计.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北京中加学校AP微积分课程的实施方案正值北京中加学校建校十五周年之际,为了实现百年名校的伟大目标,无论是在管理,还是在教育教学上都需要不断健全和完善体制机制。然而,学科课程的建设和更新势必首当其冲,迫在眉睫。暑假在大连举行的北京中加学校数学课程和教学多元化的探究教学研讨会为北京中加学校的学科建设开了先河,也奠定了思想基础。借此良机,对于北京中加学校的特色学科之一,AP微积分,我们借鉴过去的教学经验,整合国内外教学资源,依据美国大学理事会AP微积分的课程标准,拟定了关于AP微积分课程的教学设想。一、指导思想本课程是北京中加学校为学生开设的一门国际数学专业基础课。开设本课程的目的,在于以美国大学理
2、事会规定的AP微积分课程标准为指导,按照理论与实践相结合的原则,通过对微积分基本原理及规律的讲授,使学生系统掌握极限、连续、导数和积分等知识的基本原理、基本内容和基本方法,对微积分在经济活动中的应用有比较清晰的了解,提高学生专业词汇量和阅读英语原版书籍的能力,拓宽学生国际数学视野,使学生体验到数学的价值和美学认知。课内学时144,4学分,从高一第一学期开始开设,高二第二学期结束,将近两个学年授完。二、课程目标AP微积分是在高中学习阶段有余力、有能力、成绩优秀的学生有机会先修的美国大学基础课程以获得美国大学学分专业的必修课。要求学生在学完本课程后,掌握本课程的基本原理、基本内容、基本方法及基本知
3、识,并具有对所学的微积分知识进行现实理解和实际应用的能力,从而顺利通过AP考试。据此,本课程考核着重于基本知识的掌握、理解和应用分析能力两个方面。在各章的考核要求中,有关基本概念、基本理论、基本公式、应用分析能力的内容按“识记、理解、简单应用和综合应用”四个层次要求。三、教学进度北京中加学校AP微积分教学内容及其进度计划学期普通班国际班AP微积分课时分配高一第一学期第一模块集合(4课时)函数与基本初等函数(32课时)解析几何(9课时)复合函数、反函数以及作图计算器的使用高中课程:6课时/周,共54课时;AP微积分:2课时/周,共18课时;第二模块直线与圆的方程(9课时)圆锥曲线(8课时)三角函
4、数(16课时)极限极限的运算法则高中课程:6课时/周,共54课时;AP微积分:2课时/周,共18课时;第二学期第三模块三角恒等变换反三角函数导数导数的基本公式高中课程:2课时/周,共18课时;AP微积分:6课时/周,共54课时;第四模块立体几何导数的运算法则高中课程:2课时/周,共18课时;AP微积分:6课时/周,共54课时;高二第一学期第五模块常用逻辑用语平面向量解三角形导数的应用高中课程:2课时/周,共18课时;AP微积分:6课时/周,共54课时;第六模块数列不等式积分方程微分方程高中课程:2课时/周,共18课时;AP微积分:6课时/周,共54课时;第二学期第七模块复数统计计数原理AP微积
5、分总复习AP微积分AB考试高中课程:2课时/周,共18课时;AP微积分:6课时/周,共54课时;第八模块参数方程极坐标AP微积分BC高中课程:4课时/周,共36课时;AP微积分BC:4课时/周,共36课时;高三第一学期总复习总复习毕业会考AP微积分BC高中课程:4课时/周,共36课时;AP微积分BC:4课时/周,共36课时;第二学期微积分其它大学预修课程AP微积分BCAP微积分BC考试高中课程:4课时/周,共36课时;AP微积分BC:4课时/周,共36课时;四、课程内容Chapter 2 Limits and Derivatives第二章 极限和导数Teaching Content教学内容Te
6、aching Requirements and Objectives教学要求和目标Time学时2.1 The Tangent and Velocity Problems2.1切线和速率问题The student will apply the derivative to solve problems, including tangent and normal lines to a curve, curve sketching, velocity, acceleration.2.2 The Limit of a Function2.2 函数的极限The student will define an
7、d apply the properties of limits of functions. This will include limits of a constant, sum, product, quotient, one-sided limits, limits at infinity, infinite limits, and nonexistent limits.2.3 Calculating Limits Using the Limit Laws2.3利用极限法则计算极限2.5 Continuity2.5 连续性The student will state the definit
8、ion of continuity and determine where a function is continuous or discontinuous. This will include continuity at a point; continuity over a closed interval; and graphical interpretation of continuity and discontinuity.2.6 Limits at Infinity; Horizontal Asymptotes2.6 无穷远处极限和水平渐近线The student will defi
9、ne and apply the properties of elementary functions, including algebraic, trigonometric, exponential, and composite functions and their inverses, and graph these functions using a graphing calculator. Properties of functions will include domains, ranges, combinations, odd, even, periodicity, symmetr
10、y, asymptotes, zeros, upper and lower bounds, and intervals where the function is increasing or decreasing.The student will also define and apply the properties of limits of functions. This will include limits of a constant, sum, product, quotient, one-sided limits, limits at infinity, infinite limi
11、ts, and nonexistent limits.2.7 Tangents, Velocities, and Other Rates of Change2.7切线、速度和其它的变化率2.8 Derivatives2.8导数The student will find the derivative of an algebraic function by using the definition of a derivative. This will include investigating and describing the relationship between differentiab
12、ility and continuity.2.9 The Derivative as a Function2.9 导函数Review复习Chapter 3 Differentiation Rules第三章 导数法则Teaching Content教学内容Teaching Requirements and Objectives教学要求和目标Time学时3.1 Derivatives of Polynomials and Exponential Functions3.1多项式函数和指数函数的导数The student will apply formulas to find the derivati
13、ve of algebraic, trigonometric, exponential, and logarithmic functions and their inverses.3.2 The Product and Quotient Rules3.2导数的乘法和除法运算法则The student will apply formulas to find the derivative of the sum of elementary functions.3.3 Rates of Change in the Natural and Social Sciences3.3自然科学和社会科学中的变化率
14、Students will be able to understand the mathematical modeling process of derivatives (rates of changes) in the real world3.4Derivatives of Trigonometric Functions3.4三角函数的导数Students will be able to use the differentiation rules of trigonometric functions 3.5 The Chain Rule3.5链式法则The student will appl
15、y formulas to find the derivative of the sum, product, quotient, inverse and composite (chain rule) of elementary functions.3.6 Implicit Differentiation3.6隐函数求导The student will find the derivative of an implicitly defined function.3.7 Higher Derivatives3.7高阶导数The student will find the higher order d
16、erivatives of algebraic, trigonometric, exponential, and logarithmic functions.3.8Derivative of Logarithmic Functions3.8对数函数的导数The student will use logarithmic differentiation as a technique to differentiate non-logarithmic functions.3.9 Hyperbolic Functions3.9 双曲函数The student will be able to unders
17、tand the definition of hyperbolic functions, and solve for its derivatives.3.11 Linear Approximations and Differentials3.11 线性逼近和微分The student will apply the derivative to solve problems, including tangent and normal lines to a curve, curve sketching, velocity, acceleration, related rates of change,
18、 Newtons method, differentials and linear approximations, and optimization problems.Review复习Chapter 4 Applications of Differentiation第四章 导数的应用Teaching Content教学内容Teaching Requirements and Objectives教学要求和目标Time学时4.1 Maximum and Minimum Values4.1 极大值和极小值The student will be able to understand extreme v
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AP 微积分 课程设计

限制150内