与圆有关的位置关系(第3课时).doc
《与圆有关的位置关系(第3课时).doc》由会员分享,可在线阅读,更多相关《与圆有关的位置关系(第3课时).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、24.2 与圆有关的位置关系(第3课时) 教学内容 1切线长的概念 2切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角 3三角形的内切圆及三角形内心的概念教学目标1知识与技能 了解切线长的概念 理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握它的应用复习圆与直线的位置关系和切线的判定定理、性质定理知识迁移到切长线的概念和切线长定理,然后根据所学三角形角平分线的性质给出三角形的内切圆和三角形的内心概念,最后应用它们解决一些实际问题 2过程与方法 (1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动了解概念,理解等量关系,掌握
2、定理及公式 (2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流 (3)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力 3情感、态度与价值观 经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望 重难点、关键 1重点:切线长定理及其运用 2难点与关键:切线长定理的导出及其证明和运用切线长定理解决一些实际问题 教学过程 一、复习引入 1已知ABC,作三个内角平分线,说说它具有什
3、么性质? 2点和圆有几种位置关系?你能说说在这一节中应掌握几个方面的知识? 3直线和圆有什么位置关系?切线的判定定理和性质定理,它们如何? 老师点评:(1)在黑板上作出ABC的三条角平分线,并口述其性质:三条角平分线相交于一点;交点到三条边的距离相等 (2)(口述)点和圆的位置关系有三种,点在圆内dr;不在同一直线上的三个点确定一个圆;反证法的思想 (3)(口述)直线和圆的位置关系同样有三种:直线L和O相交dr;切线的判定定理:经过半径的外端并且垂直于半径的直线是圆的切线;切线的性质定理:圆的切线垂直于过切点的半径 二、探索新知 从上面的复习,我们可以知道,过O上任一点A都可以作一条切线,并且
4、只有一条,根据下面提出的问题操作思考并解决这个问题 问题:在你手中的纸上画出O,并画出过A点的唯一切线PA,连结PO,沿着直线PO将纸对折,设圆上与点A重合的点为B,这时,OB是O的一条半径吗?PB是O的切线吗?利用图形的轴对称性,说明圆中的PA与PB,APO与BPO有什么关系? 学生分组讨论,老师抽取34位同学回答这个问题 老师点评:OB与OA重叠,OA是半径,OB也就是半径了又因为OB是半径,PB为OB的外端,又根据折叠后的角不变,所以PB是O的又一条切线,根据轴对称性质,我们很容易得到PA=PB,APO=BPO 我们把PA或PB的长,即经过圆外一点作圆的切线,这点和切点之间的线段的长,叫
5、做这点到圆的切线长 从上面的操作几何我们可以得到: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角 下面,我们给予逻辑证明 例1如图,已知PA、PB是O的两条切线求证:PA=PB,OPA=OPB 证明:PA、PB是O的两条切线 OAAP,OBBP 又OA=OB,OP=OP, RtAOPRtBOP PA=PB,OPA=OPB 因此,我们得到切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角 我们刚才已经复习,三角形的三条角平分线于一点,并且这个点到三条边的距离相等(同刚才画的图)设交点为I,那么I到AB、AC、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有关 位置 关系 课时
限制150内