因式分解(一)(第3课时)教案 苏科版.doc
《因式分解(一)(第3课时)教案 苏科版.doc》由会员分享,可在线阅读,更多相关《因式分解(一)(第3课时)教案 苏科版.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课 题9.5乘法公式的再认识因式分解课时分配本课(章节)需 3 课时本 节 课 为 第 3 课时为 本 学期总第 课时因式分解(三)- 提公因式法教学目标1、 理解因式分解的意义及其与整式乘法的区别和联系重 点掌握公因式的概念,会使用提公因式法进行因式分解。难 点1、正确找出公因式2、正确用提公因式法把多项式进行因式分解教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动情景设置:学生阅读“读一读”后,完成练习下列由左边到右边的变形,哪些是整式乘法,哪些是因式分解,因式分解用的是哪个公式? (x+2)(x-2)=x2 - 4; x2 - 4=(x+2)(x-2); x2
2、4 + 3x =(x+2)(x-2)+ 3x;新课讲解:我们来观察分析am +bm +cm = m(a +b +c),这个式子由左边到右边的变形是多项式的因式分解,这里m是多项式am +bm +cm的各项am 、bm 、cm都含有的因式,称为多项式各项的公因式。确定多项式的公因式的方法, 对数字系数取各项系数的最大公约数, 各项都含有的字母取最低次幂的积作为多项式的公因式, 公因式可以是单项式 , 也可以是多项式, 如:ax+bx 中的公因式是x. 多项式 a(x+y)+b(x+y) 的公因式是 (x+y). 如果多项式的第一项系数是负的, 一般要先提出 “一” 号, 使括号内的首项系数变为正
3、, 在提出 “一” 号时, 注意括号里的各项都要变号.关键是确定多项式各项的公因式, 然后, 将多项式各项写成公因式与其相应的因式的积, 最后再提公因式, 把公因式写在括号外面, 然后再确定括号里的因式, 这个因式 ( 括号里的 ) 的项数与原多项式的项数相同, 如果项数不一致就漏项了.完成“议一议”如果多项式的各项含有公因式,那么就可以把这个公因式提出来,把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。例题5:把下列各式分解因式: 6a3b 9a2b2c -2m3 + 8m2 - 12m思路点拨:通过例5,教会学生如何找公因式,讲清要决定系数与字母,具体方法加以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解一第3课时教案 苏科版 因式分解 课时 教案
限制150内