三角形的中位线教案及反思.doc
《三角形的中位线教案及反思.doc》由会员分享,可在线阅读,更多相关《三角形的中位线教案及反思.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、22.6三角形的中位线教学目标1、了解三角形的中位线的概念;2、了解三角形的中位线的性质“三角形中位线平行于第三边且等于第三边的一半” 3、能应用三角形中位线概念及定理进行有关的论证和计算 4、通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力。教学重点、难点:三角形的中位线定理探究与证明,因为其中添加辅助线的方法和思想学生不易掌握,是本节教学的难点。教学设想:中位线是三角形与梯形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用。三角形中位线定理不但给出了三角形线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平
2、行和线段相等提供了新的思路。结合教材编写思路,首先要创造性使用教材中的问题情景,把教材中不动的问题情景转化为学生互动的问题情景,使学生在互动中去感受。而有关的一些知识,都是在教师的引导下,经过学生充分的思考、讨论,由学生自己归纳、总结发现。此外,还要根据实际情况,对不同的学生进行有针对性的指导,使不同的学生都有发展,真正把课堂还给学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和组织者。教学过程一、创设情境,引入新课如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?二、合作
3、学习,发展能力:1、动手操作:我们知道将一个三角形怎样分割成一个三角形和一个梯形,只要剪的那条直线平行于三角形的一边就可以提出新的问题:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片求剪得的两张纸片能拼成平行的四边形(1)怎样剪?剪痕的位置有什么要求?(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?学生动手操作,按“中位线”位置剪开三角形,并拼出平行四边形(注意提示:在拼之前标好各点名称,并且想好大概怎样拼)2、引导学生概括出中位线的概念:连结三角形两边中点的线段叫做三角形的中位线。问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?
4、启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。并结合三角形中线的定义,让学生明确两者区别,可做一练习,在ABC中,画出中线、中位线3、猜想:DE与BC的关系?(位置关系与数量关系)根据刚才的操作猜想三、师生互动,探究新知1、证明你的猜想(引导学生写出已知,求证,并启发分析)已知:ABC中,D、E分别是AB、AC的中点,求证:DEBC。学生独立思考,师生共同完成推理过程,板书证明过程,强调有其他证法。根据刚才操作,学生容易想到:如图,以点E为旋转中心,把ADE绕点E,按顺时针方向旋转180,得到CFE,则D,E,F同在一直线
5、上,DE=EF,且ADECFE。所以证明:延长点E至F,使EF=DE,连接CF易证ADECFE ADE=F,AD=CF,ABCF。又BD=AD=CF,四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),DFBC(根据什么?),DEBC。2、进行题后小结:对于一些没能直接进行证明的问题,我们通常采用的思想是将它转化为我们熟悉的图形,如上面的证明方法,就是将三角形的中位线(新知识)转化为平行四边形和全等三角形(旧知识),进行证明的,当然这个定理的证明方法很多,关键在于如何添加辅助线。可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力。但
6、也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明。如右图中的辅助线等。我们可以发现:主要思路还是进行适当的转化。(l)延长DE到F,使EF=DE,连结CF,由ADECFE,可得ADFC。(2)延长DE到F,使EF=DE,利用对角线互相平分的四边形是平行四边形,可得ADFC。(3)过点C作CFAB,与DE延长线交于F,通过证ADECFE,可得ADFC。(这个部分因为学生的实际情况及时间关系,上课时未讲解,放在第二节课复习三角形中位线证明时给以补充)3、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半三角形中位线定理。用符号语言表达:点D、E是AB、AC
7、的中点(或DE是三角形的中位线) DEBC(三角形中位线平行于第三边且等于第三边的一半)为便于同学对定理能更好的掌握和应用,可引导学生分析三角形中位线定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(也可以单独用其中结论)。四、学以致用、落实新知练习1、课本P98练习第一题 在原题的基础上, (1)在BC取中点F,连接DF,由三角形的中位线定理得DF ,DF= ,则四边形ADFE是 (2)连接EF,则EF ,EF= ,用符号标出相等的线段,可以看出图中的四个三角形 (3)若AB=10cm
8、,AC=6cm,则四边形ADFE的周长为_cm(4)若ABC周长为6cm,面积为12cm2,则DEF的周长是 _cm,面积是_cm思考:从此题的练习我们可以看到任意一个三角形有三条中位线如果要将任意一个三角形分成四个全等三角形,只需要画出三角形的三条中位线练习2、请回答引例中的问题(1)A例题及分析:例1、如图,DE是ABC的中位线,AF是BC边上的中线,DE和AF交于点O.求证:DE与AF互相平分。(注意证明的书写,让学生选择简单却严谨的理由书写)DHCFGBE小结:为什么想到连接DF,CE 从要证明的结论看可以证明它是一个平行四边形,所以改造平行四边形成为必须;从条件看有两边中点可考虑添加
9、三角形的中位线。练习3:已知D为ABC内一点,点E、F、G、H分别为AB、BC、DC、AD的中点。求证:四边形EFGH是平行四边形变式一:若将AC线段取消,还能得到刚才的结果吗?变式二:若取消AC,而D在BC的另一侧,还能得到同样的结果吗?证明:如图,连接AC。EF是ABC的中位线,EFAC(三角形中位线平行于第三边,且等于第三边一半)。同理,HGAC。EFHG。四边形EFGH是平行四边形(一组对边平行且相等的四边形是平行四边形)我们称四边形四个中点连接得到的四边形为中点四边形由变式二,我们知道任意四边形得到的中点四边形是平行四边形,若原来的四边形为矩形,则得到的中点四边形是什么特殊的四边形?
10、若是菱形,正方形?总结得到的四边形关键和原来四边形的什么量有关?(因为时间关系课堂上没有更多的时间讨论变式二,放置第三课时总结)五、小结回顾,反思提高1、三角形中位线及三角形中位线与三角形中线的区别。2、三角形中位线定理及证明思路。3、中点四边形的特征小结六、作业布置: 课后反思本节课基本达到预期的效果,通过本节课的学习,学生能理解三角形中位线的概念,能通过操作探究三角形中位线的性质定理并且能由操作过程,领会三角形中位线的性质定理的证明思路和证明过程,能在不同的图形背景下比较快速地找到三角形的中位线,并运用其性质定理计算和证明有关结论。在教学过程中为便于学生的理解和提高学生的学习效果,我认为课
11、堂上的几个处理是合理且有效的:(1) 让学生自己操作,将一个三角形剪成一个梯形和三角形并拼成一个平行四边形,让学生动手,便于学生直观感受且形成证明定理的添加辅助线的思路,使这一较难的定理证明不至于太难,从而无从下手,也达到了动态几何与静态的平面几何的结合。但在操作中也产生了预期没有想到的问题,因为预期估计学生对于在哪里剪不会有什么问题,也希望学生能自己动脑而不是老师说学生无思考的操作,所以剪之前提示较少,有的学生在剪的时间花费较多;还有操作中学生尽管知道要从边的中点剪开,但动手能力不足,真正剪时却不是中点,从而导致拼不出平行四边形;也有学生将图形剪开之后,对于如何拼有困惑,没有多少思维指导,只
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 中位线 教案 反思
限制150内