新型应急服务产品公司统计过程质量控制(范文).docx
《新型应急服务产品公司统计过程质量控制(范文).docx》由会员分享,可在线阅读,更多相关《新型应急服务产品公司统计过程质量控制(范文).docx(74页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新型应急服务产品公司统计过程质量控制xxx有限公司目录一、 项目基本情况4二、 产业环境分析6三、 基本原则7四、 必要性分析8五、 过程质量控制的特点9六、 质量数据与分布规律14七、 过程能力17八、 过程能力的计算和评价19九、 全面质量管理的定义20十、 全面质量管理的核心观点23十一、 质量信息管理26十二、 质量教育与培训35十三、 质量是企业赖以生存与发展的基石40十四、 质量是增强综合国力的重要途径44十五、 SWOT分析45十六、 项目风险分析51十七、 项目风险对策54十八、 发展规划56法人治理结构59(一)股东权利及义务59股东按其所持有股份的种类享有权利,承担义务;持
2、有同一种类股份的股东,享有同等权利,承担同种义务。59一、 项目基本情况(一)项目投资人xxx有限公司(二)建设地点本期项目选址位于xxx。(三)项目选址本期项目选址位于xxx,占地面积约99.00亩。(四)项目实施进度本期项目建设期限规划24个月。(五)投资估算本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项目总投资37552.08万元,其中:建设投资28664.59万元,占项目总投资的76.33%;建设期利息781.19万元,占项目总投资的2.08%;流动资金8106.30万元,占项目总投资的21.59%。(六)资金筹措项目总投资37552.08万元,根据资金筹措方案
3、,xxx有限公司计划自筹资金(资本金)21609.57万元。根据谨慎财务测算,本期工程项目申请银行借款总额15942.51万元。(七)经济评价1、项目达产年预期营业收入(SP):74800.00万元。2、年综合总成本费用(TC):59144.58万元。3、项目达产年净利润(NP):11453.56万元。4、财务内部收益率(FIRR):23.19%。5、全部投资回收期(Pt):5.76年(含建设期24个月)。6、达产年盈亏平衡点(BEP):26528.21万元(产值)。(八)主要经济技术指标主要经济指标一览表序号项目单位指标备注1占地面积66000.00约99.00亩1.1总建筑面积105287
4、.09容积率1.601.2基底面积37620.00建筑系数57.00%1.3投资强度万元/亩278.112总投资万元37552.082.1建设投资万元28664.592.1.1工程费用万元24359.932.1.2工程建设其他费用万元3463.762.1.3预备费万元840.902.2建设期利息万元781.192.3流动资金万元8106.303资金筹措万元37552.083.1自筹资金万元21609.573.2银行贷款万元15942.514营业收入万元74800.00正常运营年份5总成本费用万元59144.586利润总额万元15271.417净利润万元11453.568所得税万元3817.85
5、9增值税万元3200.0810税金及附加万元384.0111纳税总额万元7401.9412工业增加值万元25466.0713盈亏平衡点万元26528.21产值14回收期年5.76含建设期24个月15财务内部收益率23.19%所得税后16财务净现值万元11139.04所得税后二、 产业环境分析唐山,简称“唐”,河北省地级市,位于河北省东部、华北平原东北部,南临渤海,北依燕山,毗邻京津,地处华北与东北通道的咽喉要地,总面积为13472平方千米,是中国(河北)自由贸易试验区组成部分。唐山因唐太宗李世民东征高句丽驻跸而得名,素有“北方瓷都”之称。这里诞生了中国第一座机械化采煤矿井、第一条标准轨距铁路、
6、第一台蒸汽机车、第一桶机制水泥。唐山是中国评剧的发源地,素有“冀东三支花”之称的皮影、评剧、乐亭大鼓,为国家级非物质文化遗产。2019年,唐山市下辖7个市辖区、3个县级市、4个县,常住人口796.4万人,实现地区生产总值6890.0亿元,其中,第一产业增加值531.2亿元,第二产业增加值3613.3亿元,第三产业增加值2745.5亿元,三次产业增加值结构为7.7:52.4:39.9。按常住人口计算,全年人均地区生产总值86667元(按年平均汇率折合12563美元)。三、 基本原则坚持政府引导,政策扶持。遵循应急产业公共属性,加大政府引导力度,完善应急产业政策体系,健全应急产业发展机制,优化产业
7、发展环境,打造应急产业健康发展新生态。坚持市场主导,需求牵引。强化需求侧引导,培树新型消费观念,推进新产品新服务示范应用,激发市场主体发展应急产业的内生动力,打造新的经济增长点。坚持创新驱动,高端发展。聚焦重大突发事件处置需求,围绕标志性应急产品产业链、价值链,打造应急产业创新平台,着力推进原始创新、集成创新和引进消化吸收再创新,促进科技成果产品化、产业化,推动应急产业迈向中高端。坚持突出特色,集聚发展。发挥产业比较优势,依托现有产业基地、特色集群,着力强链、延链、补链,推进产业基础高级化和产业链现代化,促进全产业链系统集成,培育大中小企业协同发展格局。坚持产业联动,融通发展。大力推动制造业和
8、服务业融合、应急产业间的深度融合,实现产业融合创新、互促发展,打造应急产业发展新模式、新业态,创新应急新产品和新服务。四、 必要性分析1、现有产能已无法满足公司业务发展需求作为行业的领先企业,公司已建立良好的品牌形象和较高的市场知名度,产品销售形势良好,产销率超过 100%。预计未来几年公司的销售规模仍将保持快速增长。随着业务发展,公司现有厂房、设备资源已不能满足不断增长的市场需求。公司通过优化生产流程、强化管理等手段,不断挖掘产能潜力,但仍难以从根本上缓解产能不足问题。通过本次项目的建设,公司将有效克服产能不足对公司发展的制约,为公司把握市场机遇奠定基础。2、公司产品结构升级的需要随着制造业
9、智能化、自动化产业升级,公司产品的性能也需要不断优化升级。公司只有以技术创新和市场开发为驱动,不断研发新产品,提升产品精密化程度,将产品质量水平提升到同类产品的领先水准,提高生产的灵活性和适应性,契合关键零部件国产化的需求,才能在与国外企业的竞争中获得优势,保持公司在领域的国内领先地位。五、 过程质量控制的特点1、统计过程质量控制的基本概念所谓控制是要以某个标准为基准,一旦偏离了这个基准,就要尽快加以纠正,使之保持这个基准。SPC(统计过程控制)就是以统计控制状态(稳态)作为基准的,这是一个非常重要的基本概念。统计控制状态也称稳态,即过程中只有正常因素(随机因素)而无异常因素(系统因素)产生的
10、变异的状态。影响质量变异的原因包含正常因素(随机因素)和异常因素(系统因素)两大类。正常因素的特点表现为:对质量变异的影响是微小的;在过程中是始终存在的;对质量变异的影响方向是不确定的。由正常因素所造成的质量变异称为正常质量波动,鉴于正常质量波动的原因难以查明、难以消除,所以常采取持续改进的方法。异常因素的特点表现为:对质量变异的影响很大;在过程中时有时无;对质量变异的影响方向是确定的;异常因素是可以控制的(可以查明、可以消除)。由于异常因素所造成的质量变异、质量波动,其原因可以查明、可以消除,所以采取的态度应该是“严加控制”。正常质量波动表现出质量数据形成典型分布(在确定的生产条件下,质量数
11、据的分布中心和标准偏差表现为确定的值)。异常质量波动表现出质量数据的典型分布遭到破坏,即质量数据的分布中心和标准偏差发生显著的变化。统计过程控制就是要保持过程中只有正常因素起作用,控制异常因素的作用,使过程处于稳定受控状态。为了实现过程控制,必须采用科学的质量控制方法,如统计技术中分布状态、控制图,来捕捉过程中的异常先兆,并结合专业技术消除异常的质量波动。也就是说,统计过程控制是通过应用统计技术识别异常、消除异常,把不合格原因消灭于过程之中,达到预防不合格品产生的目的。2、统计过程质量控制的步骤质量控制大致可以分为7个步骤。(1)选择控制对象。(2)选择需要监测的质量特性值。(3)确定规格标准
12、,详细说明质量特性。(4)选定能准确测量该特性值的监测仪表,或自制测试手段。(5)进行实际测试并做好数据记录。(6)分析实际与规格之间存在差异的原因。(7)采取相应的纠正措施。当采取相应的纠正措施后,仍然要对过程进行监测,将过程保持在新的控制水准上。一旦出现新的影响因子,还需要测量数据,分析原因,进行纠正,因此这7个步骤形成了一个封闭式流程,称为“反馈环”。这点和六西格玛质量突破模式的DMAIC有共通之处。质量控制技术包括两大类:抽样检验和过程质量控制。抽样检验通常是指生产前对原材料的检验或生产后对成品的检验,根据随机样本的质量检验结果决定是否接受该批原材料或产品,过程质量控制是指对生产过程中
13、的产品随机样本进行检验,以判断该过程是否在预定标准内生产。抽样检验用于检验与评价,而过程质量控制应用于各种形式的生产过程。因此,所谓统计过程质量控制,是利用数理统计的方法,对生产过程的各个阶段进行控制。从而达到改进与保证产品质量的目的。SPC强调全过程预防为主的思想。SPC不仅可用于制造过程,而且还可以用于服务过程,以改进和保证服务质量。SPC强调全员参加,人人有责,强调采用科学的方法来达到目的。3、SPC的特点许多质量管理技术是对已生产出来的产品进行分析、检验或评估,以找出提高产品质量的途径和方法,这是事后补救的方法。而统计过程控制与其他方法不同,它是在生产过程的各个阶段对产品质量进行适时的
14、监控与评估,因而是一种预防性的方法,强调全员参与和整个过程的控制。因而其特点可总结为以下几点。(1)产品质量的统计观点。应用数理统计方法分析和总结产品质量规律的观点是现代质量管理的基本观点之一。产品质量的统计观点包括以下两方面内容。产品质量或过程质量特性值是波动的。在生产过程中,产品的质量特征值的波动是不可避免的,它是由设备(Machine)、材料(Material)、操作人(Man)、工艺(Method)、环境(Environment),即4MIE五个方面等基本因素的波动综合影响所致。由于产品在生产中不断受4MIE等质量因素的影响,而这些质量因素是在不断变化的,即使同一个工人,用同一批原材料
15、在同一台机器设备上所生产出来的同一种零件,其质量特性值也不会完全一样。它们或多或少存在差异。这是质量变异的固有本性波动性。产品公差制度的建立已表明产品质量是波动的。产品质量的变异具有统计规律。即产品质量特性值的波动具有统计规律性。产品质量特性值的波动幅值及出现不同波动幅值的可能性大小,服从统计学的某些分布规律。在质量管理中,常用的分布主要有正态分布、二项分布、泊松分布等,而寿命特性值很多服从指数分布。知道了质量特性值服从什么分布,就可以利用这一点来保证与提高产品的质量。因此,可以用统计理论来保证与改进产品质量。统计过程质量控制就是在这种思想指导下产生的。(2)发现及纠正异常因素。从对质量的影响
16、大小来看,质量因素的波动分为两种:正常波动和异常波动,或称为偶然误差(偶然因素)和系统误差(异常因素)。产生质量波动的因素分为随机因素和异常因素两大类。随机因素对产品质量和过程的影响可用质量改进的技术与方法进行识别、减小和降低;异常因素对产品质量的影响很大,在生产过程中应利用SPC控制技术及时分析,并纠正和消除。因此,在正常生产过程中一旦发现异常因素,则应尽快地把它找出来,并采取措施将其消除。这就是抓主要矛盾。SPC控制技术是发现及纠正异常因素的科学工具。(3)稳定状态是过程质量控制追求的目标。在生产过程中,只有随机因素而没有异常因素的状态称为稳定状态,也叫统计控制状态。在统计控制状态下,对产
17、品质量的控制不仅可靠而且经济,所产生的不合格品最少。因此,稳态生产是过程控制所追求的目标。(4)预防为主是统计过程控制的重要原则。质量是制造出来的,不是检验出来的。统计过程控制的目的是在生产过程中实施一种避免浪费,不生产废品的预防策略,发挥质量管理人员、技术人员、现场操作工人的共同作用,从上、下工序过程的相互联系中进行分析,实现“预防为主”的原则,在生产过程中保证产品质量。现代质量管理强调以预防为主,要求在质量形成的整个生产过程中,尽量少出或不出不合格品,这就需要研究两个问题:一是如何使生产过程具有保证不出不合格品的能力;二是如何把这种保证不出不合格品的能力保持下去,一旦这种保证质量的能力不能
18、维持下去,应能尽早发现,及时得到情报,查明原因,采取措施,使这种保证质量的能力继续稳定下来,保持下去,真正做到防患于未然。前一个问题一般称为生产过程的工序能力分析,后一个问题一般称为生产过程的控制。六、 质量数据与分布规律1、质量数据的基本概念定量分析是现代质量管理中的基本特征之一。为了进行定量分析,就必须有数据。因此,在质量管理中要特别重视对数据的搜集、整理和分析工作。质量数据是指某质量指标的质量特性值,在质量控制过程中,将检测和分析得到的质量特性值用数字记录下来,简称质量数据。由于质量一词含义丰富,既包括狭义的产品质量,也包括广义的工作质量,因而质量指标在企业中就多种多样,质量数据在企业中
19、几乎无处不在。在质量数据统计分析中,从样本到总体的问题,即统计推断问题。所谓统计推断,就是根据抽样分布律和概率理论,由样本结果(统计数)来推论总体特征(参数)。因此,特别关注三项指标,一是数据的集中位置,二是数据的分散程度,三是数据的分布规律。质量数据是指由个体产品质量特性值组成的样本(总体)的质量数据集,在统计上称为变量;个体产品质量特性值称变量值,根据质量数据的特点,可以将其分为计量值数据和计数值数据。(1)计量值数据。计量值数据是指可以连续取值的数据,属于连续型变量。其特点是在任意两个数值之间都可以取精度较高一级的数值。它通常可以用仪器测量的连续性数据,如长度、重量、强度、时间、标高、位
20、移等。(2)计数值数据。计数值数据是指不能连续取值的,只能用自然数表示的数据,属于离散型变量。如合格品件数、废品数、错字数、质量缺陷点数等。计数值数据还可进一步划分为计件值数据和计点值数据。计件值数据是指按产品个数计数的数据,如合格品件数、废品件数等;计点值数据是指按点计数的数据,如缺陷、棉布上的疵点数、铸件上的砂眼数等。计数值是指具有离散分布性的数据。2、质量数据的统计特征值应用统计过程质量控制,其基本的做法就是用有限的样本去分析推断总体的特征。过程的质量特性值是不断波动的。当搜集到的数据足够多时,就会发现一个现象,即所有数据都在一定范围内分散在一个中心值周围,越靠近中心值,数据越多;越偏离
21、中心值,数据越少。这意味着数据的分散是有规律的,表现为数据的集中性。数据的分散性和集中性统称为数据的“统计规律性”。质量数据的集中趋势和离散程度反映了总体质量变化的内在规律性。(1)质量数据的位置特征值。在分析质量数据的分布状态时,描述数据分布集中趋势主要有算术平均值、中位数等。(2)数据的离散特征数。数据的分散程度在质量管理中就是质量特性值的波动性,反映过程能力。在分析数据的分布状态时,常被用于表示数据分布的离散程度的特征数,主要有极差、标准偏差等。3、质量数据的分布规律质量数据具有个体数值的波动性和总体分布的规律性。在统计过程质量控制中,各种统计技术的应用都是以质量数据的分布规律为依据进行
22、的,其中最常用的有正态分布、二项式分布和泊松分布。(1)正态分布。正态分布是一种最常见的连续性随机变量的概率分布。其特征是“钟”形曲线。实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同范围内正态曲线下的面积可用公式计算。轴与正态曲线之间的面积恒等于1。(2)二项分布。二项分布是一种典型的离散性分布。(3)泊松分布。泊松分布P(A)中只有一个参数入,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如,某电话交换台收到的呼叫来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白细胞等,以
23、固定的平均瞬时速率入(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。七、 过程能力1、过程能力过程能力(PC)是指过程(或工序)处于稳定状态下的实际加工能力,它是衡量工序质量的一种标志,又叫工序能力,在机械加工业中又叫加工精度。SPC的基准就是统计控制状态或称稳态。过程能力反映了稳态下该过程本身所表现的最佳性能(分布宽度最小)。因此,在稳态下,过程的性能是可预测的,过程能力也是可评价的。离开稳态这个基准,对过程就无法预测,也就无法评价。过程能力决定于由偶然因素造成的标准差。通常用6倍标准差(六西格玛)表示过程能力,它的数值越小越好。2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新型 应急 服务 产品 公司 统计 过程 质量 控制 范文
限制150内