新人教版六年级下册数学各单元知识点(共10页).doc
《新人教版六年级下册数学各单元知识点(共10页).doc》由会员分享,可在线阅读,更多相关《新人教版六年级下册数学各单元知识点(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上最新版六年级数学下册各单元知识点一 负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出),光有学过的0 1 3.4 是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。若一个数小于0,则称它是一个负数。负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面 加负号“-”号, 不可以省略 例如:-2,-5.33,-45,-3、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正
2、小数) 正数的写法:数字前面可以加正号“+”号,也可以省略不写。例如:+2,5.33,+45,4、 0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、正负数轴:分界负正0分界 负数 0 正数 左边 右边6、比较两数的大小:利用数轴: 负数0正数 或 左边右边利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大 -二 百分数(二)(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。几折就是十分之几,也就是百分之几十。例如八折=80,六折五=65解决
3、打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答 商品现在打八折 :现在的售价是原价的80商品现在打六折五:现在的售价是原价的652、成数:几成就是十分之几,也就是百分之几十。例如一成=10,八成五=80解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答这次衣服的进价增加一成 :这次衣服的进价比原来的进价增加10今年小麦的收成是去年的八成五:今年小麦的收成是去年的85(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个
4、人收入的一部分缴纳给国家。(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。(3)应纳税额:缴纳的税款叫做应纳税额。(4)税率:应纳税额与各种收入的比率叫做税率。(5)应纳税额的计算方法: 应纳税额=总收入×税率 收入额=应纳税额÷税率 2、利率(1)存款分为活期、整存整取和零存整取等方法。(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。(3)本金:存入银行的钱叫做本金。(4)利息:取款时银行多支付的钱叫做利息。(5
5、)利率:利息与本金的比值叫做利率。(6)利息的计算公式:利息本金×利率×时间 利率利息÷时间÷本金×100(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率) 税后利息=本金×利率×时间×(1-利息税率)购物策略: 估计费用:根据实际的问题,选择合理的估算策略,进行估算。购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处 三 圆柱和圆锥一、圆柱
6、1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。 圆柱也可以由长方形卷曲而得到。(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。其中,第一种方式得到的圆柱体体积较大。)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。(2)侧面的特征:圆柱的侧面是一个曲面。(3)高的特征 :圆柱有无数条高4、圆柱的切割:横切:切面是圆,表面积增加2倍底面积,即S 增 =2r² 竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面
7、直径,表面积增加两个长方形的面积,即S增=4rh 5、圆柱的侧面展开图:沿着高展开,展开图形是长方形,如果h=2r,展开图形为正方形 不沿着高展开,展开图形是平行四边形或不规则图形 无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积 :S底=r² 底面周长:C底=d=2r 侧面积 :S侧=2rh 表面积 :S表=2S底+S侧=2r²+2rh 体积 :V柱=r²h 考试常见题型:已知圆柱的底面积和高, 求圆柱的侧面积,表面积,体积,底面周长 已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
8、 已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积 已知圆柱的侧面积和高, 求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积 =侧面积一个底面积油桶的表面积 =侧面积两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥 1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的 圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,
9、与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。(2)侧面的特征:圆锥的侧面是一个曲面。(3)高的特征 :圆锥有一条高。4、圆柱的切割:横切:切面是圆 竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh5、圆锥的相关计算公式:底面积 :S底=r² 底面周长:C底=d=2r 体积 :V锥=r²h 考试常见题型:已知圆锥的底面积和高,求体积,底面周长已知圆锥的底面周长和高,求圆锥的体积,底面积 已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法
10、,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。 3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。 4、圆柱与圆锥等底等高 ,体积相差Sh题型总结 直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化 分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比 圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)横截面的问题
11、浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以四、典型题: 1、一个圆柱的侧面展开是一个正方形,它的高是底面直径的倍,即h=C=d,它的侧面积是S侧=h²2、圆柱的底面半径扩大2倍,高不变,表面积扩大2倍,体积扩大4倍。3、圆柱的底面半径扩大2倍,高也扩大2倍,表面积扩大4倍,体积扩大8倍。4、圆柱的底面半径扩大3倍,高缩小3倍,表面积不变,体积扩大3倍。5、一个圆柱和它等底等高的圆锥体积之和是48立方厘米,这个圆
12、柱的体积是( )立方厘米,圆锥的体积是( )立方厘米圆锥和它等底等高的圆柱体积之比是1 :3,圆柱占1份,圆锥占3份,一共4份,题目中说了4份的和一共是48立方厘米。 圆锥占了4份中的1份,圆柱占了4份中的3份V锥:48÷4=12(立方厘米) 或 48×=12(立方厘米) V柱:48÷4=12(立方厘米) 12×3=36(立方厘米) 或 48×=36(立方厘米)6、一个圆柱和它等底等高的圆锥体积之差是24立方分米,这个圆柱的体积是( )立方分米,圆锥的体积是( )立方分米。圆锥和它等底等高的圆柱体积之比是1 :3,圆柱占1份,圆锥占3份,1份和
13、3份相差了2份,题目中说了相差24立方分米,2份就是24立方分米圆锥占了2份中的1份,圆柱占了2份中的3份V锥:24÷2=12(立方分米) 或24×=12(立方分米)V柱:24÷2=12(立方分米) 12×3=36(立方分米) 或 24×=36(立方分米)7、一个圆柱和一个圆锥,体积相等,底面积也相等,圆柱的高是2厘米,圆锥的高是( )厘米。 V柱=V锥 V柱=V锥 S柱底h柱= S锥底h锥 S柱底h柱= S锥底h锥 h柱= h锥 S柱底= S锥底 2= h锥 4 = S锥底 h锥= 2÷ S锥底= 4÷ h锥=6 S锥底=
14、128、一个圆柱和一个圆锥体积相等,高也相等,圆柱的底面积是4平方分米,圆锥的底面积是( )平方分米。9、一个圆锥和一个圆柱的底面积相等,体积的比是1:6。如果圆锥的高是3.6厘米,圆柱的高是( )厘米,如果圆柱的高是3.6厘米,圆锥的高是( )厘米。S锥底h锥1 S锥底h锥 1 S柱底h柱 6 S柱底h柱 6 h锥1 h锥 1 h柱 6 h柱 6 h柱×1 = ×h锥×6 h柱 = ×h锥×6 h柱 = ×3.6×6 h柱÷÷6 = h锥 h柱 = 7.2 3.6÷÷6 = h锥 1
15、0、一个圆柱体,把它的高截短3厘米,它的底面积减少94.2平方厘米,这个圆柱的体积减少了( )立方厘米。r²C=S侧÷h r=C÷÷2 V=r²h =94.2÷3 =31.4÷3.14÷2 =3.14×5×3 =31.4(厘米) =5(厘米) =235.5(立方厘米) 四 比例1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法比较,比的前项相当于被除数,后项相当于除数,比
16、值相当于商。(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)比的后项不能是零。(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。方法:首
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 六年级 下册 数学 单元 知识点 10
限制150内