人工智能原理人工智能原理 (43).pdf
《人工智能原理人工智能原理 (43).pdf》由会员分享,可在线阅读,更多相关《人工智能原理人工智能原理 (43).pdf(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Artificial IntelligenceBayesian NetworksArtificial Intelligence2 7.5.1 About Uncertain Knowledge 7.5.2 Rational Decisions 7.5.3 Algorithm of a Decision-theoretic Agent 7.5.4 Bayes Rule 7.5.5 Representing Full Joint Distribution 7.5.6 Constructing Bayesian NetworksContentsArtificial Intelligence3 7.5
2、.7 Compactness 7.5.8 Node Ordering 7.5.9 Conditional Independence RelationsContentsArtificial Intelligence:Reasoning:Reasoning by Knowledge4 Evolution of an intelligent agent:problem solving,reasoning,planning and learning.智能体的进化:问题求解、推理、规划以及学习。Agents may need to handle uncertainty,due to partial ob
3、servability and non-determinism.智能体可能需要处理不确定性,由于部分可观察性和不确定性问题。To make decision with uncertainty,we need在不确定性的情况下做出决策,我们需要 Probability theory,概率论,Utility theory,效用论,Decision theory.决策论。About Uncertain Knowledge 关于不确定性知识7.5.Bayesian NetworksArtificial Intelligence:Reasoning:Reasoning by Knowledge5A90=
4、home to airport 90 minutes by taxi before flight departs.从家里打车在航班起飞前90分钟到机场 Question:问题“Will A90get me to the airport on time?”A90 能使我准时到达机场吗?Answer:答案The taxi agent concludes either:出租汽车公司给出两个结论中的一个:the risks falsehood:“A90will get us there in time”.有风险的谎言:A90将使我们及时到达机场。the weaker conclusion:“A90wi
5、ll get us there in time,if there is no traffic jam,I dont get into an accident,the car doesnt break down,and.”A90将使我们及时到达机场,如果没有交通堵塞、不出交通事故、汽车不出故障的话,Example:An uncertainty problem 一个不确定性问题7.5.Bayesian NetworksArtificial Intelligence:Reasoning:Reasoning by Knowledge6 Probability theory 概率论for dealing
6、 with degrees of belief.是用于处理置信度的理论 Utility theory 效用论the quality of being useful.是有效性的质量 to represent and reason with preferences,every state has a degree of usefulness/utility.用偏好来表现和推理,每个状态都具有“有效性/效用”的度量值。Decision theory 决策论the general theory of rational decisions.是理性决策的通论 Decision theory=probabi
7、lity theory+utility theory决策论=概率论+效用论Rational Decisions 理性决策7.5.Bayesian NetworksArtificial Intelligence:Reasoning:Reasoning by Knowledge7Algorithm of a Decision-theoretic Agent 一种决策论智能体的算法7.5.Bayesian NetworksA decision-theoretic agent that selects rational actions.一个选择理性动作的决策论智能体function DECISION-
8、THEORETIC-AGENT(percept)returns an actionpersistent:belief_state,probabilistic beliefs about the current state of the world action,the agents actionupdate belief_state based on action and perceptcalculate outcome probabilities for actions,given action descriptions and current belief_stateselect acti
9、on with highest expected utility,given probabilities of outcomes and utility informationreturn actionArtificial Intelligence:Reasoning:Reasoning by Knowledge8 Product rule 乘积规则 Two ways to factor a joint distribution over two variables:两个变量联合分布的两种计算方法:Bayes rule 贝叶斯规则Bayes Rule 贝叶斯规则7.5.Bayesian Net
10、worksP(b|a)=P(a|b)P(b)P(a)This rule underlies most modern AI for probabilistic inference.这个规则成为大多数现代人工智能概率推理的基础。Why is Bayes rule useful 为什么贝叶斯定理有用 Often we have good probability estimates for three terms to compute the fourth.我们常常需要根据三个项的概率估计值去计算第四个。P(a b)=P(a|b)P(b)and P(a b)=P(b|a)P(a)Artificial
11、Intelligence:Reasoning:Reasoning by Knowledge9 Often we perceive as evidence the effect of some unknown cause,and would like to determine that cause.In that case,Bayes rule becomes我们往往想根据一些未知原因的证据,来查明其原因。这样,贝叶斯定理就变成了Example:Inference with Bayes Rule 贝叶斯规则进行推理7.5.Bayesian Networks Knows P(symptoms|di
12、sease)and want to derive a diagnosis,P(disease|symptoms).已知 P(symptoms 症状|disease 疾病),想要得出一个诊断 P(疾病|症状)。P(cause|effect)=P(effect|cause)P(cause)P(effect)/conditional probability that meningitis causes a stiff neck 脑膜炎导致颈部僵硬的条件概率/prior probability that a patient has meningitis 病人患脑膜炎的先验概率/prior probab
13、ility that any patient has a stiff neck 任何病人患有颈部僵硬的先验概率P(s|m)=0.7P(m)=1/50000P(s)=0.01P(m|s)=P(s|m)P(m)P(s)=0.71/50000.01=0.0014 /a stiff neck to have meningitis 颈部僵硬患有脑膜炎的概率Artificial Intelligence:Reasoning:Reasoning by Knowledge10 A probabilistic graphical model(a type of statistical model)一种概率图模型
14、(一种统计模型的类型)With a directed acyclic graph(DAG),it represents:a set of random variables,and conditional dependencies between the variables.采用一种有向无环图(DAG),它表示:一组随机变量,以及变量之间的条件相关性。Its specification:它的规范如下:1)a set of nodes,each corresponds to a random variable,2)a set of directed links to those nodes,and
15、 3)a conditional probability distribution for each node given its parents:1)一组节点,每个节点对应于一个随机变量,2)一组这对这些节点的有向连接,以及 3)每个节点在给定双亲下的条件概率分布:About Bayesian Networks 贝叶斯网络7.5.Bayesian NetworksP(Xi|Parents(Xi)Artificial Intelligence:Reasoning:Reasoning by Knowledge11 The name of Bayesian networks is the most
16、 common one,but there are many synonyms,including:贝叶斯网络这个名称是最常用的,但还有许多同义词,包括:belief network,信念网络 probabilistic network,概率网络 causal network.因果网络 A Bayesian network represents a set of random variables and their conditional dependencies.一个贝叶斯网络表示一组随机变量和他们的条件依赖关系。E.g.,it could represent the probabilist
17、ic relationships between diseases and symptoms.例如:它可以表示疾病与症状之间的概率关系。About Bayesian Networks 贝叶斯网络7.5.Bayesian NetworksArtificial Intelligence:Reasoning:Reasoning by Knowledge12 The two views to understand semantics of Bayesian networks:理解贝叶斯网络语义的两个观点:1st:to view the network as a representation of th
18、e joint probability distribution.第一、将该网络视为一种联合概率分布的表示。2nd:to view it as an encoding of a collection of conditional independence statements.第二、将其视为一组条件独立语句的一种编码。The two views are equivalent,but:这两个观点是等价的,但是:1stview:helpful in understanding how to construct networks,第一种观点:有助于理解如何构建网络,2ndview:helpful i
19、n designing inference procedures.第二种观点:有助于设计推理过程。Two Views 两个观点7.5.Bayesian NetworksArtificial Intelligence:Reasoning:Reasoning by Knowledge13 A burglar alarm installed at home,used to detect a burglary or minor earthquakes.房子里安装了一个防盗报警器,用于检测被盗或地震。Two neighbors,John and Mary,who have promised to cal
20、l you at work when they hear the alarm.有两个邻居,John和Mary,他们已答应当听到报警时,就给你的办公室打电话。Variables变量:Burglar,Earthquake,Alarm,JohnCalls,MaryCalls.Network topology reflects the knowledge:网络的拓扑结构要反应如下知识:A Burglar or an Earthquake can set the Alarm.盗窃或者地震会导致报警。The Alarm can cause Mary or John to call.报警会引起Mary或Jo
21、hn打电话。Example:A typical Bayesian network 一个典型的贝叶斯网络7.5.Bayesian NetworksArtificial Intelligence:Reasoning:Reasoning by Knowledge14Example:A typical Bayesian network 一个典型的贝叶斯网络7.5.Bayesian NetworksA Bayesian network with the conditional probability tables(CPTs).一个具有条件概率表(CPTS)的贝叶斯网络。Where其中 B,E,A,J,M
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能原理人工智能原理 43 人工智能 原理 43
限制150内