数字式热敏电阻温度计设计(共45页).doc
《数字式热敏电阻温度计设计(共45页).doc》由会员分享,可在线阅读,更多相关《数字式热敏电阻温度计设计(共45页).doc(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上专心-专注-专业数字式热敏电阻温度计设计摘要温度作为一个重要的物理量,是工业生产过程中最普遍、最重要的工艺参数之一,所以温度测量技术和测量仪器的研究是一个重要的课题。随着时代的进步和发展,单片机技术已经伸入到各个领域,基于单片机数字温度计与传统的温度计相比,具有读数方便,测温范围广,其输出温度采用数字显示。本设计是基于单片机的温度测试系统,采用热敏电阻搭建电桥,进行温度测试。利用高精密仪表放大器PGA203对小信号进行放大,该芯片具有失调电压小,输入阻抗高,共模抑制比高等特点。在进行模数转换是使用TLC4535将模拟信号转换为数字信号。TLC4535是14位的串行AD
2、,具有转换速率高,低功耗等特点。51单片机作为主控制器件进行数据运算。该系统能较好的对温度变化进行实时显示,达到了本设计的要求。关键字:单片机 仪表放大器 串行AD 温度电桥The design of digital thermistor trermometerABSTRACTTemperature as an important physics, industrial production process in the most general, one of the most important parameters, so the temperature measurement tech
3、nology and measurement instrument research is an important topic. With the progress of The Times and development, microcontroller technology has dipped into various areas, based on single-chip digital thermometer and traditional thermometer readings, compared with convenient, temperature measurement
4、 range, its output temperature using digital display.The design is based on single-chip temperature test system, build a bridge thermistor temperature test. High-precision instrumentation amplifier PGA203 small signal amplification, the chip has a small offset voltage, high input impedance, common m
5、ode rejection ratio and high。During the analog to digital conversion is to use the TLC4535 to convert analog signals to digital signals.TLC4535 14 serial AD, with a high conversion rate, low power consumption characteristics. 51 microcontroller as the main control device for data operations. The sys
6、tem can be better to temperature changes in real-time display to achieve the design requirements.Keywords:Sigle-chip Instrumentatioa amplifier Serial the AD Temperature bridge目 录第1章 绪论1.1课题背景 “工欲善其事,必先利其器”,这是中国的一句古话,人们早就知道工具的重要性。随着以知识经济为特征的信息时代的到来,人们对仪器仪表作用的认识愈加深入。作为工业自动化技术工具的自动化仪表与控制装置,在高新技术的推
7、动下,正跨入真正的数字化、智能化、网络化的时代。而温度作为一个重要的物理量,是工业生产过程中最普遍、最重要的工艺参数之一。随着工业的不断发展,对温度测量的要求越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高。因此,温度测量和温度测量技术的研究也是一个重要的研究课题。温度传感器是当前温度检测的主要器件,本课题的主要出发点是设计出测量温度检测的温度连续检测的仪器。该论文主要讲述了用温度传感测温的主要原理、实际硬件电路的设计、软件设计和调试分析。第一章介绍了温度检测现状和仪器仪表的发展现状。第二章提出了几种单片机数字温度计的设计方案并作出比较。第三章讲述了单片机系统硬件电路的设计
8、过程,包括对智能温度传感器DS18B20详细的介绍以及单片机系统的设计,并讲述了仪器的软件设计,给出了软件流程图,整套仪器是由单片机系统控制的,包括LED显示器、通讯接口等。第四章进行系统调试分析,这将有助于今后对系统的改进,以进一步提高系统的测量精度,并讲述了通过本设计所得的结论和心得体会。1.2国内外测温状况随着国内外工业的日益发展,温度检测技术也不断地进步,目前的温度检测使用的温度计种类繁多、应用范围也较广泛,大致包括以下几种方法:(1)利用物体热胀冷缩原理制成的温度计利用此原理制成的温度计大致分成三大类:a 玻璃温度计,它是利用玻璃感温包内的测温物质(水银、酒精、甲苯、煤油等)受热膨胀
9、、遇冷收缩的原理进行温度测量的;b 双金属温度计,它是采用膨胀系数不同的两种金属牢固粘合在一起制成的双金属片作为感温元件,当温度变化时,一端固定的双金属片,由于两种金属膨胀系数不同而产生弯曲,自由端的位移通过传动机构带动指针指示出相应温度;c 压力式温度计,它是由感温物质(氮气、水银、二甲苯、甲苯、甘油和低沸点液体如氯甲烷、氯乙烷等)随温度变化,压力发生相应变化,用弹簧管压力表测出它的压力值,经换算得出被测物质的温度值。(2)利用热电效应技术制成的温度检测元件利用此技术制成的温度检测元件主要是热电偶。热电偶发展较早,比较成熟,至今仍为应用最广泛的检测元件。热电偶具有结构简单、制作方便、测量范围
10、宽、精度高、热惯性小等特点。常用的热电偶有以下几种:a 镍铬-镍硅,型号为WRN,分度号为K,测温范围0-900,短期可测1200。b 镍铬-康铜,型号为WRK,分度号为F,测温范围0-600,短期可测800。c 铂铑-铂,型号为WRP,分度号为S,在1300以下的温度可长期使用,短期可测1600。d 铂锗30-铂锗6,型号为WRR,分度号为B,测温范围300-1600,短期可测1800。(3)利用热阻效应技术制成的温度计用此技术制成的温度计大致可分成以下几种:a 电阻测温元件,它是利用感温元件(导体)的电阻随温度变化的性质,将电阻的变化值用显示仪表反映出来,从而达到测温的目的。目前常用的有铂
11、热电阻(分度号为Pt100,Pt10两种)和铜热电阻(分度号有Cu5O,Cu100两种)。b 导体测温元件,它与热电阻的温阻特性刚好相反,即有很大副温度系数,也就是说温度升高时,其阻值降低。他们的关系为: (1.1)式中 RT在温度T(K)时的电阻值;RT0在温度T0(K)时的电阻值;e自然对数的底;B常数,其值与半导体材料的成分和制作方法有关。c 陶瓷热敏元件它的实质是利用半导体电阻的正温特性,用半导体陶瓷材料制作而成的热敏元件,常称为PCI,或NCI热敏元件。PCT热敏元件分为突变型和缓变型两类。突变型PCT元件的温阻特性是当温度达到顶点时,它的阻值突然变大,有限流功能,多数用于保护电器。
12、缓变型PCI元件的温阻特性基本上随温度升高阻值慢慢增大,起温度补偿作用。NCI元件特性与PGT元件的突变特性刚好相反,即随温度升高,它的阻值减小1。(4)利用热辐射原理制成的高温计辐射测温在近年相对其他的测温领域显得活跃些,热辐射高温计通常分为两种:一种是单色辐射高温计,一般称光学高温计;另一种是全辐射高温计,它的原理是物体受热辐射后,视物体本身的性质,能将其吸收、透过或反射。而受热物体放出的辐射能的多少,与它的温度有一定的关系。热辐射式高温计就是根据这种热辐射原理制成的。(5)利用声学原理进行温度测量声学法温度检测技术是近年来发展起来的一项新技术,利用该技术,可以对炉内的烟气温度测量值和火焰
13、分布在线检测,判断炉的燃烧状况,进行实时调节和控制。声学温度检测技术的基本原理是通过测量声波传感器间的声波传播时间以最小二乘原理重建温度的测量方法。1.3温度检测技术介绍近年来,在温度检测技术领域,多种新的检测原理与技术的开发应用,已取得了重大进展。新一代温度检测元件正在不断出现和完善化。(1)晶体管温度检测元件半导体温度检测元件是具有代表性的温度检测元件。半导体的电阻温度系数比金属大12个数量级,二级管和三极管的PN结电压、电容对温度灵敏度很高。基于上述测温原理己研制了各种温度检测元件。(2)集成电路温度检测元件利用硅晶体管基极发射极间电压与温度关系(即半导体PN结的温度特性)进行温度检测,
14、并把测温、激励、信号处理电路和放大电路集成一体,封装于小型管壳内,即构成了集成电路温度检测元件。目前,国内外也进行了生产。(3)核磁共振温度检测器所谓核磁共振现象是指具有核自旋的物质置于静磁场中时,当与静磁场垂直方向加以电磁波,会发生对某频率电磁的吸收现象。利用共振吸收频率随温度上升而减少的原理研制成的温度检测器,称为核磁共振温度检测器。这种检测器精度极高,可以测量出千分之一开尔文,而且输出的频率信号适于数字化运算处理,故是一种性能十分良好的温度检测器。在常温下,可作理想的标准温度计之用。(4)热噪声温度检测器它的原理是利用热电阻元件产生的噪声电压与温度的相关性。其特点是:a 输出噪声电压大小
15、与温度是比例关系;b 不受压力影响;c 感温元件的阻值几乎不影响测量精确度;所以它是可以直接读出绝对温度值而不受材料和环境条件限制的温度检测器。(5)石英晶体温度检测器它采用LC或Y型切割的石英晶片的共振频率随温度变化的特性来制作的。它利用µP技术,自动补偿石英晶片的非线性,测量精度较高,一般可检测到0.001,所以可作标准检测之用。(6)激光温度检测器激光测温特别适于远程测量和特殊环境下的温度测量。用氦氖激光源的激光作反射计可测得很高的温度,精度达1%;用激光干涉和散射原理制作的温度检测器可测量更高的温度,上限可达3000,专门用于核聚变研究,但在工业上应用还需进一步开发和实验。(
16、7)微波温度检测器采用微波测温可以达到快速测量高温的目的。它是利用在不同温度下,温度与控制电压成线性关系的原理制成的。这种检测器的灵敏度为250kHZ/,精度为1%左右,检测范围为201400。(8)纯贵金属热电偶的研究由两种纯金属组成的热电偶,因其材料均匀性远优于合金材料,因而稳定性好得多。在铂铑合金热电偶(S,R型)的不确定度已很难提高之后,人们开始寻找由纯贵金属组成的热电偶,以代替S和R型热电偶,作为传递的标准。(9)信息技术时代自动化系统中的温度检测仪表现代的工业过程自动化系统是现场总线控制系统,它是信息技术进入工业自动化后出现的新一代的自动控制系统。现场总线是安装在制造或过程区域的现
17、场装置与控制室内的自控装置之间的数字式、串行、多点通信的数据总线。所有的现场仪表(温度检测仪表是其中一种)均接到现场总线上。在这样的系统中,通常不应使用各有不同输出的温度计,必须将输出转变成统一的电信号,这样“温度计”就变成了“温度变送器”。在现场总线控制系统中的温度变送器主要是热电偶变送器和热电阻变送器,也有辐射温度变送器。第二章 数字式热敏电阻温度计的设计方案2.1方案一本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D转换,可直接将测得的温度值以二进制形式输出。该方案的原理框图和硬件原理图如图2.1和图2.2所示:LE
18、D显示器80C51单片机温度传感器DS18B20图2.1 方案(一)系统结构框图DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控制系统。图2.2 方案(一)系统硬件原理图2.2方案二系统的硬件电路包括微控制器部分(主机),温度检测,人机对话(键盘/显示)三个主要部分。系统结构框图和硬件原理图分别如图2.3和图2.4所示:图2.3 方案(二)系统结构框图温度检测部分采用传统的热敏电阻,热敏电阻的阻
19、值随环境温度变化而变化,变送器将电阻信号转换成与温度成正比的电压信号,经A/D转换器将其转换为单片机可识别得二进制数字量,单片机主要控制LED显示器显示正确的温度值,LED显示器实现显示功能。图2.4 方案(二)系统硬件原理图2.3方案比较与选择方案(一)与方案(二)的主要区别在温度检测部分,方案(一)主要利用DS18B20这块芯片进行温度检测,并将采集到的模拟量转换为单片机识别的二进制数。方案(二)是采用热敏电阻检测温度,然后利用A/D转换器将温度模拟量转换为二进制数供单片机处理。方案(二)与方案(一)相比,它最大的特点就是它能检测的温度范围很大,热敏电阻的性能决定了整个设计的所能检测的温度
20、范围。方案(一)的温度检测范围已经由系统中的DS18B20的特性所决定,它能检测的温度范围为-55到120,其温度检测范围很宽,已能足够满足一般测量需要,从整体上来看方案(二)比方案(一)更具有实际的锻炼意义,因为我们方案(一)是利用现有的智能温度传感芯片DS18B20,他无需A/D转换,直接输出数字量,所以本设计中所使用的温度测量电路是方案(二)的电路。第三章 系统硬件设计及工作原理3.1系统的整体硬件框图本系统温度测量模块主要为温度电桥,温度电桥采用高精度正温度系数阻值大小为10K的热敏电阻和20K的定值电阻进行分压,将温度信号转化为电信号。量程转换模块主要是利用仪表放大器PGA203对电
21、压信号进行放大,以避免温度转换的电压信号太小。信号处理模块主要是利用OP07搭建的反相放大器使信号满足A/D转化器对模拟输入信号的要求。A/D转换器利用TLC3545将模拟信号转化为数字信号,送入到单片机。最后数据经过单片机处理,驱动数码管进行温度显示。量程转换模块A/D转化单片机数据理信号处理模块温度测量模块数码管显示按键控制图3.1 系统的整体硬件框图3.2温度测量电桥结构及工作原理3.2.1温度电桥的介绍 温度电桥的主要元件是热敏电阻。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基
22、准仪。与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt01+(t-t0) (3.1)式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0)时对应电阻值;为温度系数。半导体热敏电阻的阻值和温度关系为 Rt=AeB/t (3.2) 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字式 热敏电阻 温度计 设计 45
限制150内