数学模型思想PPT课件.ppt
《数学模型思想PPT课件.ppt》由会员分享,可在线阅读,更多相关《数学模型思想PPT课件.ppt(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于数学模型思想第一张,PPT共四十页,创作于2022年6月什么是数学模型?什么是数学模型?原型模型原型就是人们在社会活动和生产实践中所关心和研究的实际对象,这些实际对象在科技领域通常用系统或过程等词汇。例如机械系统、交通系统、导弹飞行过程,等等。模型是指人们为一定的目的对原型的某一部分信息加以简略和提炼而构建出来的这个原型的某个代替物。例如,城市交通图是城市的一个模型第二张,PPT共四十页,创作于2022年6月模型分类物质模型(形象模型)理想模型(抽象模型)直观模型物理模型思维模型符号模型数学模型模型的分类第三张,PPT共四十页,创作于2022年6月从广义上讲从广义上讲凡一切数学概念(向量、
2、实数等)、数学理论体系、各种数学公式、各种方程(代数方程、函数方程等等)以及由公式系列构成的算法系统等称作数学模型从狭义上讲从狭义上讲只有那些反应特定问题或特定的具体事务系统的数学关系结构才叫数学模型。数学模型数学模型:是针对或参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一种数学结构。第四张,PPT共四十页,创作于2022年6月应用领域应用领域了解程度了解程度表现特征表现特征数学方法数学方法人口模型、交通模型、金融模型、环境模型、生态模型、企业管理模型、城镇规划模型等等白箱模型、灰箱模型、黑箱模型确定性模型与随机性模型、静态模型与动态模型、离散模型与连续模
3、型初等模型、运筹学模型、几何模型、微分方程模型、概率统计模型等等。数学模型的分类数学模型的分类数学模型的分类数学模型的分类第五张,PPT共四十页,创作于2022年6月确定性数学模型:确定性数学模型:模型相应的实际对象具有确定性和固定性,对象间又具有必然的联系,这类模型的表示形式可以是各种各样的方程式、关系式、网络图等,所使用的方法是经典的数学方法。例如:在标准大气压下,把水加热,当温度升高到100的时候,水必然开始沸腾。第六张,PPT共四十页,创作于2022年6月随机性数学模型:随机性数学模型:这类模型的实际对象具有随机性,数学模型的表示工具是概率论、数理统计及随机过程等。例如:在一定的条件下
4、,一只鸡蛋可以孵化出一只小鸡,小鸡是雄是雌却具有随机性,它也受一种自然规律的支配。第七张,PPT共四十页,创作于2022年6月模糊性数学模型:模糊性数学模型:这类模型所对应的实体对象及其关系均具有模糊性,数学模型的基本表示工具是模糊几何理论及模糊逻辑等。例如:“远大于10的自然数”。第八张,PPT共四十页,创作于2022年6月数学模型方法数学模型方法数学模型方法数学模型方法含义含义应用应用基本基本步骤步骤数学理论研究的经典方法;数学理论研究的经典方法;研究自然界和社会实际问题的一般数学方法。研究自然界和社会实际问题的一般数学方法。第九张,PPT共四十页,创作于2022年6月数学模型方法数学模型
5、方法数学模型方法数学模型方法含义含义含义含义数学模型:数学关系结构数学模型方法(mathmatical modeling method):简称MM方法借用数学模型来研究原型的功能特征及其内在规律,并应用于实际的一种方法。借助数学模型认识事物,数学抽象方法的直接应用和体现。数学方法解决实际问题的第一步。例例第十张,PPT共四十页,创作于2022年6月数学模型、数学模型思想、数学模型方法、数学模型、数学模型思想、数学模型方法、数学建模数学建模数学建模:运用数学知识、数学思想方法解决实际问题的过程(建立人口增长模型的过程)数学模型:数学的数式、图表或算法等数学结构;(人口增长模型)数学模型方法:(依
6、托人口增长模型来分析人口增长趋势)数学模型思想:将实际问题,化归成数学问题,构造出相应的数学模型,通过对数学模型的研究和解答,使实际问题得以解决的一种数学化归思想。第十一张,PPT共四十页,创作于2022年6月根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。第十二张,PPT共四十页,创作于2022年6月数学模型方法数学模型方法例例假假设设:该国的政治经济社会环境稳定;人口增长数由其人口的生育、死亡引起,与是否移民无关该国的人口数量变化是连续的;该国的每一个人有相同的生育能力和死亡几率返回第十三张,PPT共四十页,创作于2022年6月数学模型方法数学模型方法基本步骤基本
7、步骤基本步骤(现实对象与模型的关系)现实人口增长模型问题数学抽象数学抽象 数学模型数学模型数数学学推推导导描点画图的函数并检验求解返回解释返回解释 预测出2000年人口数检检验验现实原型问题现实原型问题数学模型的解数学模型的解 现实原型的解现实原型的解第十四张,PPT共四十页,创作于2022年6月数学模型方法数学模型方法数学模型方法数学模型方法应用应用应用应用数学之美 地心说日心说行星运动海王星广泛应用原因第十五张,PPT共四十页,创作于2022年6月数学模型与数学教育数学模型与数学教育第十六张,PPT共四十页,创作于2022年6月在中学数学中的体现在中学数学中的体现中学中的两重含义中学中的两
8、重含义第十七张,PPT共四十页,创作于2022年6月在中学数学中的体现在中学数学中的体现课标课标义务教育数学课程标准指出:在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。模型思想。模型思想模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。整体体现课程内容的核心。整体体现课程内容的核心。初步学
9、会从数学的角度发现问题和提出问题,综合运用数学知识解决初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。简单的实际问题,增强应用意识,提高实践能力。第十八张,PPT共四十页,创作于2022年6月在中学数学中的体现在中学数学中的体现课标课标普通高中数学课程标准高中数学课程应提供基本内容的实际背景,反映数学的应用价值,开展“数学建模”的学习活动,设立体现数学某些重要应用的专题课程.高中数学课程应力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力要求提高,不仅有数学建模的学习
10、要求,而且要设立要求提高,不仅有数学建模的学习要求,而且要设立专题课程,增加课程中相互学应用的含量和力量专题课程,增加课程中相互学应用的含量和力量。第十九张,PPT共四十页,创作于2022年6月中学数学中的体现中学数学中的体现教材教材波利亚:“早已解决的问题”“辅助问题”中学数学中的一切公式、定理、法则、图像、函数以及相应的运算系统都可以作为数学模型。函数模型、不等式模型、复数模型、排列组合模型、概率统计模型、线性规划模型中学中的数学模型中学中的数学模型:第二十张,PPT共四十页,创作于2022年6月中学数学中的体现中学数学中的体现教材教材应用题:应用题:有纯农药药液一桶,倒出8升后用水加满,
11、然后又倒出4升后再用水加满,此时桶中所含的纯农药药液不超过桶的容积的28%,问桶的容积最大为多少升?不等式解决实际问题的步骤:设、列、解、答第二十一张,PPT共四十页,创作于2022年6月在中学数学中的体现在中学数学中的体现教材教材数学建模专题在高一年级四套教材中的位置第二十二张,PPT共四十页,创作于2022年6月在中学数学中的体现在中学数学中的体现课程课程高中数学建模高中数学建模常规课程常规课程运用函数知运用函数知识建模识建模运用几何知运用几何知识建模识建模运用统计知运用统计知识建模识建模寻找生活中的函数寻找生活中的函数让学生在自己让学生在自己的身边找出个真的身边找出个真实的函数实的函数学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学模型 思想 PPT 课件
限制150内