三章信源编码一离散信源无失真编码.ppt
《三章信源编码一离散信源无失真编码.ppt》由会员分享,可在线阅读,更多相关《三章信源编码一离散信源无失真编码.ppt(70页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三章信源编码一离散信源无失真编码 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望l3.1信源及其分类l3.2离散无记忆信源的等长编码l3.3离散无记忆信源的不等长编码l3.4最佳不等长编码3.1 信源及其分类信源及其分类信源及其分类信源及其分类l离散信源l连续信源l无记忆信源l有记忆信源l简单信源独立同分布l平稳信源,各态历经源lM阶记忆源l时间离散连续源l随机波形源3.2 离散无记忆源的等长离散无记忆源的等长编码编码离散无记忆源离散无记忆源l字母表A=a1,aK
2、,概率分别为p1,pK,长为L的源输出序列uL=u1,uL,共有KL种序列l码符号字母表B=b1,bD,以码符号表示源输出序列,D元码l等长D元码,能够选择的不同码字的个数为DN,不等长D元码的个数,能够选择的不同码字的个数为D1+D2+DN=D(DN-1)/(D-1)离散无记忆源的等长编码离散无记忆源的等长编码l编码速率编码速率 R=NlogD/L。l无错编码无错编码 (U1U2UL)的不同事件用不同的码字来表示。能够实现无错编码的充要条件是DNKL。(即编码速率R=NlogD/LlogK)l有错编码有错编码 (U1U2UL)的有些不同事件用相同的码字来表示。l有错编码的译码方法与有错编码的
3、译码方法与“译码错误译码错误”概率概率 当使用有错编码时,必须给出译码方法(一个码字究竟翻译成哪个事件)。“译码错误”的概率定义为pe=P(U1U2UL)=(u1u2uL)|(u1u2uL)的码字在译码时并不译为(u1u2uL)。离散无记忆源的等长编码离散无记忆源的等长编码关于编码速率的说明:p编码速率本来是编码设备的性能指标。这就是说,首先有了编码设备的编码速率R0,然后选择N和L,使得实际的编码速率NlogD/L不能超过编码设备的编码速率R0:R=NlogD/LR0。p当编码速率R比较高时,可以选择比较大的N,因此可供选择的码字比较多,因此更容易设计出能够快速识别的码,降低译码的难度。p当
4、编码速率R比较低时,意味着使用低成本的编码设备。此时只能选择不大的N,因此更需要编码的技巧。离散无记忆源的等长编码离散无记忆源的等长编码在无错编码的前提下,编码的最低代价在无错编码的前提下,编码的最低代价l当RlogK时,能够实现无错编码。l当RH(U1)时,无论怎样编码都是有错编码。这是因为RH(U1)logK。(如果H(U1)=logK,则以上两种情形已经概括了全部情形。但如果H(U1)RH(U1)时,虽然无论怎样编码都是有错编码,但可以适当地编码和译码使译码错误的概率pe任意小。这就是所谓“渐进无错编码”。离散无记忆源的等长编码离散无记忆源的等长编码渐进无错编码渐进无错编码 (简单地说就
5、是:当RH(U1)时,可以适当地编码和译码使得译码错误的概率pe任意小。严格地说就是:)设给定了编码设备的编码速率R0,R0H(U1)。则对任意的0,总存在一个L0,使得对任意的LL0,都有对(U1U2UL)的等长编码和对应的译码方法,满足实际的编码速率R=NlogD/LR0,译码错误的概率pe。(11)渐进无错编码的原理渐进无错编码的原理 大数定律。随着L的增加,(U1U2UL)的所有事件中,某些事件所占的比例越来越小(0),其发生的概率却越来越大(1)。离散无记忆源的等长编码离散无记忆源的等长编码不能渐进无错的编码不能渐进无错的编码 (简单地说就是:当RH(U1)时,无论怎样编码和译码都不
6、能使译码错误的概率pe任意小。严格地说就是:)设给定了编码设备的编码速率R0,R00,当L,PrT(L,e)1,或对所有e0,存在有正整数L0,使得当LL0时有信源划分定理信源划分定理系1:特定典型序列出现的概率若uLTU(L,e),则信源划分定理信源划分定理l典型序列的数目:系2:当L足够大时,对于给定的信源和e0,典型序列的个数TU(L,e)满足信源划分定理信源划分定理l信源消息可以分为2组:(渐进等同分割性)1、典型序列 高概率集,渐进等概序列,AEP序列2、非典型序列 低概率集编码速率和等长编码定理编码速率和等长编码定理l编码速率:R=(1/L)logM=(N/L)logD,M为码字总
7、数l可达速率:对于给定信源和编码速率R以及任意e0,若有L0,以及编译码方法,使得LL0,错误概率小于e,R是可达的l等长编码定理:lRH(U),R是可达的,R0.037587148=H(U)。希望:2元编码的实际编码速率RR0;译码错误的概率不超过。其中取=0.1;=0.05;=0.01。DMS的等长编码的等长编码取=0.1。找L0使得即L0=253。当L253时总有P(U1U2UL)=(u1u2uL)|-0.1IL-H(U)0.10.9。另一方面,当事件(u1u2uL)中a1的个数为k,a2的个数为L-k时,DMS的等长编码的等长编码事件(u1u2uL)属于典型序列集TU(L,0.1);当
8、且仅当-0.1IL-H(U)0.1;当且仅当DMS的等长编码的等长编码设L=253。此时0.01656276L=4.19037828。当事件(u1u2u253)中a1的个数不超过4时,(u1u2u253)TU(253,0.1);否则(u1u2u253)不属于TU(253,0.1)。(u1u2u253)TU(253,0.1)的概率不小于0.9;(u1u2u253)TU(253,0.1)的个数为DMS的等长编码的等长编码对L=253,对应地取整数N=R0L=126。则N/LR0,这就是说2元编码的实际编码速率并未超出编码设备的编码速率。2元编码的编码方法:将TU(253,0.1)中的事件用不同的1
9、26长码字表示;将TU(253,0.1)外的事件用同一个126长码字表示,该码字已经用于表示了TU(253,0.1)中的一个事件。由于|TU(253,0.1)|233.3555574442126,码字足够用。2元编码的译码方法:将码字译为它所表示的TU(253,0.1)中的事件(u1u2u253)。于是,译码错误的概率为P(u1u2u253)不属于TU(253,0.1)=0.1。DMS的等长编码的等长编码取=0.05。找L0使得即L0=2020。当L2020时总有P(U1U2UL)=(u1u2uL)|-0.05IL-H(U)0.050.95。另一方面,当事件(u1u2uL)中a1的个数为k,a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信源 编码 离散 失真
限制150内