五章热力学二定律Thesecondlawofthermodynamics.ppt
《五章热力学二定律Thesecondlawofthermodynamics.ppt》由会员分享,可在线阅读,更多相关《五章热力学二定律Thesecondlawofthermodynamics.ppt(65页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、五章热力学二定律Thesecondlawofthermodynamics Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望51 热热力学第二定律力学第二定律一、自发过程的方向性一、自发过程的方向性只要只要Q不大于不大于Q,并不违反第一定律并不违反第一定律QQ?2重物下落,水温升高重物下落,水温升高;水温下降,重物升高水温下降,重物升高?只要重物位能增加小于等于水降内能只要重物位能增加小于等于水降内能减少,不违反第一定律。减少,不违反第一定律。电流通过电阻,产生热量电
2、流通过电阻,产生热量对电阻加热,电阻内产生反向对电阻加热,电阻内产生反向电流电流?只要电能不大于加入热能,不只要电能不大于加入热能,不违反第一定律。违反第一定律。3归纳:归纳:1)自发过程有)自发过程有方向性方向性;2)自发过程的反方向过程并非不可进行,而是)自发过程的反方向过程并非不可进行,而是 要有要有附加条件附加条件;3)并非所有不违反第一定律的过程均可进行。)并非所有不违反第一定律的过程均可进行。能量转换方向性的能量转换方向性的实质是实质是能质能质有差异有差异无限可转换能无限可转换能机械能,电能机械能,电能部分可转换能部分可转换能热能热能不可转换能不可转换能环境介质的热力学能环境介质的
3、热力学能4 能质降低的过程可自发进行,反之需一定条件能质降低的过程可自发进行,反之需一定条件补偿过补偿过程,其总效果是总体能质降低。程,其总效果是总体能质降低。代价代价代价代价5二、第二定律的两种典型表述二、第二定律的两种典型表述1.克劳修斯叙述克劳修斯叙述热量不可能热量不可能自发地不花代价地自发地不花代价地从低温从低温 物体传向高温物体。物体传向高温物体。2.开尔文开尔文-普朗克叙述普朗克叙述不可能制造不可能制造循环循环热机,只从热机,只从一一 个热源个热源吸热,将之吸热,将之全部全部转化为功,而转化为功,而 不在外界留下任何影响不在外界留下任何影响。3.第二定律各种表述的等效性第二定律各种
4、表述的等效性T1 失去失去Q1 Q2T2 无得失无得失热机净输出功热机净输出功Wnet=Q1 Q26三三.关于第二类永动机关于第二类永动机理想气体可逆等温膨胀理想气体可逆等温膨胀环境一个热源环境一个热源?吸收热量全部转变成功吸收热量全部转变成功?例例例例A344155752 卡诺循环和卡诺定理卡诺循环和卡诺定理一、卡诺循环及其热效率一、卡诺循环及其热效率 1.卡诺循环卡诺循环是是两两个热源的个热源的可逆可逆循环循环82.卡诺循环热效率卡诺循环热效率?910讨论:讨论:2)3)第二类永动机不可能制成。第二类永动机不可能制成。4)实际循环不可能实现卡诺循环,原因:)实际循环不可能实现卡诺循环,原因
5、:a)一切过程不可逆;一切过程不可逆;b)气体实施等温吸热,等温放热困难;气体实施等温吸热,等温放热困难;c)气体卡诺循环气体卡诺循环wnet太小,若考虑摩擦,太小,若考虑摩擦,输出净功极微。输出净功极微。5)卡诺循环指明了一切热机提高热卡诺循环指明了一切热机提高热 效率的方向。效率的方向。1)即即循环净功小于吸热量,必有放热循环净功小于吸热量,必有放热q2。11二、逆向卡诺循环二、逆向卡诺循环 制冷系数制冷系数:TcT-Tc 12供暖系数供暖系数:TRTR-T0 13三、概括性卡诺循环三、概括性卡诺循环 1.回热和极限回热回热和极限回热 2.概括性卡诺循环及其热效率概括性卡诺循环及其热效率1
6、4四、卡诺定理四、卡诺定理 定理定理1:在在相同温度相同温度的高温热源和相同的低温热源的高温热源和相同的低温热源 之间工作的之间工作的一切可逆循环一切可逆循环,其,其热效率都相热效率都相 等等,与可逆循环的,与可逆循环的种类无关种类无关,与采用哪种,与采用哪种 工质也无关工质也无关。定理定理2:在同为温度在同为温度T1的热源和同为温度的热源和同为温度T2的冷源的冷源 间工作的间工作的一切不可逆循环一切不可逆循环,其热效率必,其热效率必小小 于可逆循环热效率于可逆循环热效率。理论意义:理论意义:1)提高热机效率的途径:可逆、提高)提高热机效率的途径:可逆、提高T1,降低降低T2;2)提高热机效率
7、的极限。提高热机效率的极限。例例A44015515五、多热源可逆循环五、多热源可逆循环 1.平均吸(放)热温度平均吸(放)热温度注意:注意:1)Tm 仅在可逆过程中有意义仅在可逆过程中有意义2.多热源可逆循环多热源可逆循环2)16循环热效率归纳:循环热效率归纳:讨论:热效率讨论:热效率适用于一切工质,任意循环适用于一切工质,任意循环适用于多热源可逆循环,任意工质适用于多热源可逆循环,任意工质适用于卡诺循环,概括性卡诺循环适用于卡诺循环,概括性卡诺循环,任意工质任意工质1753 熵和热力学第二定律的数学表达式熵和热力学第二定律的数学表达式一、熵是状态参数一、熵是状态参数 1.证明证明:任意可逆过
8、程可用一组任意可逆过程可用一组 初、终态相同的由可逆初、终态相同的由可逆 绝热及等温过程组成的绝热及等温过程组成的 过程替代。过程替代。如图,如图,1-2可用可用1-a,a-b-c及及c-2代替。代替。需证明:需证明:1-a及及1-a-b-c-2的功和热量的功和热量分别相等。分别相等。令面积令面积18又又所以所以192.熵参数的导出熵参数的导出令分割循环的可逆绝热线令分割循环的可逆绝热线无穷大无穷大,且任意两线间距离,且任意两线间距离0 则则20 讨论:讨论:1)因证明中仅利用卡诺循环,故与工质性质无关;)因证明中仅利用卡诺循环,故与工质性质无关;2)因)因s是状态参数,故是状态参数,故s12
9、=s2-s1与过程无关;与过程无关;克劳修斯积分等式克劳修斯积分等式,(Tr热源温度热源温度)s是状态参数是状态参数令令3)21二、克劳修斯积分不等式二、克劳修斯积分不等式用一组等熵线分割循环用一组等熵线分割循环可逆小循环可逆小循环不可逆小循环不可逆小循环可逆小循环部分:可逆小循环部分:不可逆小循环部分:不可逆小循环部分:22可逆部分可逆部分+不可逆部分不可逆部分可逆可逆“=”不可逆不可逆“s2(可逆达可逆达终态),如:终态),如:q=03)并不意味着并不意味着因为:因为:263)由克氏不等式由克氏不等式与第二定律表达式相反与第二定律表达式相反!?!?27四、不可逆过程熵差计算四、不可逆过程熵
10、差计算 即设计一组或一个初、终态与即设计一组或一个初、终态与不可逆过程相同的可逆过程,计不可逆过程相同的可逆过程,计算该组可逆过程的熵差即可。算该组可逆过程的熵差即可。2854 熵方程与孤立系统熵增原理熵方程与孤立系统熵增原理一、熵方程一、熵方程1.熵流和熵产熵流和熵产其中其中吸热吸热“+”放热放热“”系统与外界系统与外界换热换热造成系造成系统熵的变化统熵的变化。(热)熵流(热)熵流29sg熵产,熵产,非负非负不可逆不可逆“+”可逆可逆“0”系统进行系统进行不可逆过程不可逆过程造成系统熵的增加造成系统熵的增加例例:若若TA=TB,可逆,取可逆,取A为系统为系统30取取B为系统为系统若若TATB
11、,不可逆,取不可逆,取A为系统为系统31 所以,单纯传热,若可逆,系统熵变等于熵流;若不可逆系统所以,单纯传热,若可逆,系统熵变等于熵流;若不可逆系统熵变大于熵流,差额部分由不可逆熵产提供。熵变大于熵流,差额部分由不可逆熵产提供。2.熵方程熵方程 考虑系统与外界发生质量交换,系统熵变除(热)考虑系统与外界发生质量交换,系统熵变除(热)熵流,熵产外,还应有质量迁移引起的质熵流,所以熵流,熵产外,还应有质量迁移引起的质熵流,所以熵方程应为:熵方程应为:流入流入系统熵系统熵-流出流出系统熵系统熵+熵产熵产=系统系统熵增熵增其中其中流入流入流出流出热迁移热迁移质迁移质迁移造成的造成的热热质质熵流熵流例
12、例A4221441例例A4412553例例A44226532流入流入流出流出熵产熵产熵增熵增33 熵方程核心:熵方程核心:熵可随热量和质量迁移而转移;可在不可逆过程中自熵可随热量和质量迁移而转移;可在不可逆过程中自发产生。由于一切实际过程不可逆,所以熵在能量转移发产生。由于一切实际过程不可逆,所以熵在能量转移过程中自发产生(熵产),过程中自发产生(熵产),因此熵是不守恒的,熵产是因此熵是不守恒的,熵产是熵方程的核心熵方程的核心。闭口系熵方程:闭口系熵方程:闭口绝热系:闭口绝热系:可逆可逆“=”不可逆不可逆“”闭口系:闭口系:34绝热稳流开系:绝热稳流开系:稳定流动开口系熵方程(仅考虑一股流出,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 热力学 定律 Thesecondlawofthermodynamics
限制150内