浙江省金华市2014年中考数学试卷及答案【Word解析版】(共20页).doc
《浙江省金华市2014年中考数学试卷及答案【Word解析版】(共20页).doc》由会员分享,可在线阅读,更多相关《浙江省金华市2014年中考数学试卷及答案【Word解析版】(共20页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上浙江省金华市2014年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1(3分)(2014金华)在数1,0,1,2中,最小的数是()A1B0C1D2考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案解答:解:2101,故选:D点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键2(3分)(2014金华)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A两点确定一条直线B两点之间线段最短C垂线段最短D在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点
2、确定一条直线.专题:应用题分析:根据公理“两点确定一条直线”来解答即可解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线此操作的依据是两点确定一条直线故选A点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力3(3分)(2014金华)一个几何体的三视图如图,那么这个几何体是()ABCD考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答:解:由于俯视图为圆形可得几何体为球、圆柱或圆锥,再根据主视图和左视图可知几何体为圆柱与圆锥的组合体故选:D点评:考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了
3、对空间想象能力方面的考查4(3分)(2014金华)一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()ABCD考点:概率公式.分析:用红球的个数除以球的总个数即可解答:解:布袋里装有5个球,其中3个红球,2个白球,从中任意摸出一个球,则摸出的球是红球的概率是:故选D点评:本题考查了概率公式:概率=所求情况数与总情况数之比5(3分)(2014金华)在式子,中,x可以取2和3的是()ABCD考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断解答
4、:解:A、x20,解得:x2,故选项错误;B、x30,解得:x3,选项错误;C、x20,解得:x2,则x可以取2和3,选项正确;D、x30,解得:x3,x不能取2,选项错误故选C点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数6(3分)(2014金华)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为,tan=,则t的值是()A1B1.5C2D3考点:锐角三角函数的定义;坐标与图形性质.分析:根据正切的定义即可求解解答:解:点A(t,3)在第一象限,AB=3,OB=t,又tan=,t=2故选C点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对
5、边比斜边,余弦为邻边比斜边,正切为对边比邻边7(3分)(2014金华)把代数式2x218分解因式,结果正确的是()A2(x29)B2(x3)2C2(x+3)(x3)D2(x+9)(x9)考点:提公因式法与公式法的综合运用.分析:首先提取公因式2,进而利用平方差公式分解因式得出即可解答:解:2x218=2(x29)=2(x+3)(x3)故选:C点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键8(3分)(2014金华)如图,将RtABC绕直角顶点C顺时针旋转90,得到ABC,连接AA,若1=20,则B的度数是()A70B65C60D55考点:旋转的性质.分析:根据旋转
6、的性质可得AC=AC,然后判断出ACA是等腰直角三角形,根据等腰直角三角形的性质可得CAA=45,再根据三角形的一个外角等于与它不相邻的两个内角的和求出ABC,然后根据旋转的性质可得B=ABC解答:解:RtABC绕直角顶点C顺时针旋转90得到ABC,AC=AC,ACA是等腰直角三角形,CAA=45,ABC=1+CAA=20+45=65,由旋转的性质得,B=ABC=65故选B点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键9(3分)(2014金华)如图是二次函数y=x2+2x+4的图象,使y1成立的x的取
7、值范围是()A1x3Bx1Cx1Dx1或x3考点:二次函数与不等式(组).分析:根据函数图象写出直线y=1下方部分的x的取值范围即可解答:解:由图可知,x1或x3时,y1故选D点评:本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解是解题的关键10(3分)(2014金华)一张圆心角为45的扇形纸板盒圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A5:4B5:2C:2D:考点:正多边形和圆;勾股定理.分析:先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可解答:解:如图1,连接OD,四边形ABCD是正方形,DCB=ABO=90
8、,AB=BC=CD=1,AOB=45,OB=AB=1,由勾股定理得:OD=,扇形的面积是=;如图2,连接MB、MC,四边形ABCD是M的内接四边形,四边形ABCD是正方形,BMC=90,MB=MC,MCB=MBC=45,BC=1,MC=MB=,M的面积是()2=,()=,故选A点评:本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中二、填空题(共6小题,每小题4分,满分24分)11(4分)(2014金华)写出一个解为x1的一元一次不等式x+12考点:不等式的解集.专题:开放型分析:根据不等式的解集,可得不等式解答:解:写出一个解
9、为x1的一元一次不等式 x+12,故答案为:x+12点评:本题考查了不等式的解集,注意符合条件的不等式有无数个,写一个即可12(4分)(2014金华)分式方程=1的解是x=2考点:解分式方程.专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:2x1=3,解得:x=2,经检验x=2是分式方程的解故答案为:x=2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根13(4分)(2014金华)小明从家跑步到学校,接着马上原路步行回家如图是小明离家的路程y(米)与时间
10、t(分)的函数图象,则小明回家的速度是每分钟步行80米考点:函数的图象.分析:先分析出小明家距学校800米,小明从学校步行回家的时间是155=10(分),再根据路程、时间、速度的关系即可求得解答:解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是155=10(分),所以小明回家的速度是每分钟步行80010=80(米)故答案为:80点评:本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解14(4分)(2014金华)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是240考
11、点:扇形统计图.分析:用周角乘以一水多用的所占的百分比即可求得其所占的圆心角的度数解答:解:表示“一水多用”的扇形圆心角的度数是360=240,故答案为:240点评:本题考查了扇形统计图的知识,能够从统计图中整理出进一步解题的信息是解答本题的关键15(4分)(2014金华)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G若G是CD的中点,则BC的长是7考点:全等三角形的判定与性质;线段垂直平分线的性质;勾股定理;矩形的性质.分析:根据线段中点的定义可得CG=DG,然后利用“角边角”证明DEG和CFG全等,根据全等三角形对
12、应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD解答:解:G是CD的中点,AB=8,CG=DG=8=4,在DEG和CFG中,DEGCFG(ASA),DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=4+x+x=4+2x,在RtDEG中,EG=,EF=2,FH垂直平分BE,BF=EF,4+2x=2,解得x=3,AD=AE+DE=4+3=7,BC=AD=7故答案为:7点评:本题考查了全等三角形的判
13、定与性质,矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键16(4分)(2014金华)如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且AOB=120,折线NGGHHEEF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子A,B与楼梯两边都相切,且AOGH(1)如图2,若点H在线段OB时,则的值是;(2)如果一级楼梯的高度HE=(8+2)cm,点H到线段OB的距离d满足条件d3cm,那么小轮子半径r的取值范围是(113)cmr8cm考点:圆的综合题
14、.分析:(1)作P为B的切点,连接BP并延长,作OLBP于点L,交GH于点M,求出ML,OM,根据=求解,(2)作HDOB,P为切点,连接BP,PH的延长线交BD延长线为点L,由LDHLPB,得出=,再根据30的直角三角形得出线段的关系,得到DH和r的关系式,根据0d3的限制条件,列不等式组求范围解答:解:(1)如图2,P为B的切点,连接BP并延长,作OLBP于点L,交GH于点M,BPH=BPL=90,AOGH,BLAOGH,AOB=120,OBL=60,在RTBPH中,HP=BP=r,ML=HP=r,OM=r,BLGH,=,故答案为:(2)作HDOB,P为切点,连接BP,PH的延长线交BD延
15、长线为点L,LDH=LPB=90,LDHLPB,=,AOPB,AOD=120B=60,BLP=30,DL=DH,LH=2DH,HE=(8+2)cmHP=8+2r,PL=HP+LH=8+2r+2DH,=,解得DH=r41,0cmDH3cm,0r413,解得:(113)cmr8cm故答案为:(113)cmr8cm点评:本题主要考查了圆的综合题,解决本题的关键是作出辅助线,运用30的直角三角形得出线段的关系三、解答题(共8小题,满分66分)17(6分)(2014金华)计算:4cos45+()1+|2|考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题分析:原式第一项化为最简二次根式,第
16、二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果解答:解:原式=24+2+2=4点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键18(6分)(2014金华)先化简,再求值:(x+5)(x1)+(x2)2,其中x=2考点:整式的混合运算化简求值.专题:计算题分析:原式第一项利用多项式乘以多项式法则计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算即可求出值解答:解:原式=x2x+5x5+x24x+4=2x21,当x=2时,原式=81=7点评:此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键19(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Word解析版 浙江省 金华市 2014 年中 数学试卷 答案 Word 解析 20
限制150内