混凝土结构材料的物理力学性能(共22页).doc
《混凝土结构材料的物理力学性能(共22页).doc》由会员分享,可在线阅读,更多相关《混凝土结构材料的物理力学性能(共22页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第 2 章 混凝土结构材料的物理力学性能本 章 提 要钢筋与混凝土的物理力学性能以及共同工作的特性直接影响混凝土结构和构件的性能,也是混凝土结构计算理论和设计方法的基础。本章讲述钢筋与混凝土的主要物理力学性能以及混凝土与钢筋的粘结。2.1 混凝土的物理力学性能2.1.1 混凝土的组成结构普通混凝土是由水泥、砂、石材料用水拌合硬化后形成的人工石材,是多相复合材料。通常把混凝土的结构分为三种基本类型:微观结构即水泥石结构;亚微观结构即混凝土中的水泥砂浆结构;宏观结构即砂浆和粗骨料两组分体系。 微观结构(水泥石结构)由水泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成,其物
2、理力学性能取决于水泥的化学矿物成分、粉磨细度、水灰比和凝结硬化条件等。混凝土的宏观结构与亚微观结构有许多共同点,可以把水泥砂浆看作基相,粗骨料分布在砂浆中,砂浆与粗骨料的界面是结合的薄弱面。骨料的分布以及骨料与基相之间在界面的结合强度也是重要的影响因素。 浇注混凝土时的泌水作用会引起沉缩,硬化过程中由于水泥浆水化造成的化学收缩和干缩受到骨料的限制,会在不同层次的界面引起结合破坏,形成随机分布的界面裂缝。 混凝土中的砂、石、水泥胶体组成了弹性骨架,主要承受外力,并使混凝土具有弹性变形的特点。而水泥胶体中的凝胶、孔隙和界面初始微裂缝等,在外力作用下使混凝土产生塑性变形。另一方面,混凝土中的孔隙、界
3、面微裂缝等缺陷又往往是混凝土受力破坏的起源。由于水泥胶体的硬化过程需要多年才能完成,所以混凝土的强度和变形也随时间逐渐增长。2.1.2 单轴向应力状态下的混凝土强度混凝土的强度与水泥强度等级、水灰比有很大关系;骨料的性质、混凝土的级配、混凝土成型方法、硬化时的环境条件及混凝土的龄期等也不同程度地影响混凝土的强度;试件的大小和形状、试验方法和加载速率也影响混凝土强度的试验结果。因此各国对各种单向受力下的混凝土强度都规定了统一的标准试验方法。1.混凝土的抗压强度(1) 混凝土的立方体抗压强度和强度等级立方体试件的强度比较稳定,所以我国把立方体强度值作为混凝土强度的基本指标,并把立方体抗压强度作为评
4、定混凝土强度等级的标准。1) 测定的方法我国国家标准普通混凝土力学性能试验方法(GBJ81-85)规定以边长为150mm的立方体为标准试件,标准立方体试件在(203)的温度和相对湿度90以上的潮湿空气中养护28d,按照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为N/mm2。2) 立方体抗压强度标准值fcu,k 混凝土结构设计规范规定用上述标准试验方法测得的具有95保证率的立方体抗压强度作为混凝土的立方体抗压强度标准值,用符号fcu,k表示。3) 强度等级的划分及有关规定混凝土结构设计规范规定混凝土强度等级应按立方体抗压强度标准值fcu,k确定。混凝土强度等级划分有C15、C20
5、、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。例如,C30表示立方体抗压强度标准值为30N /mm2。其中,C50C80属高强度混凝土范畴。混凝土结构设计规范规定,钢筋混凝土结构的混凝土强度等级不应低于C15;当采用HRB335级钢筋时,混凝土强度等级不宜低于C20;当采用HRB400和RRB400级钢筋以及承受重复荷载的构件,混凝土强度等级不得低于C20。预应力混凝土结构的混凝土强度等级不应低于C30;当采用钢绞线、钢丝、热处理钢筋作预应力钢筋时,混凝土强度等级不宜低于C40o4) 试验方法对立方体抗压强度的影响 图2-1试件
6、在试验机上单向受压时,竖向缩短,横向扩张,由于混凝土与压力机垫板弹性模量与横向变形系数不同,压力机垫板的横向变形明显小于混凝土的横向变形,所以垫板通过接触面上的摩擦力约束混凝土试块的横向变形,就象在试件上下端各加了一个套箍,致使混凝土破坏时形成两个对顶的角锥形破坏面,抗压强度比没有约束的情况要高。如果在试件上下表面涂一些润滑剂,这时试件与压力机垫板间的摩擦力大大减小,其横向变形几乎不受约束,受压时没有“套箍”作用的影响,试件将沿着平行于力的作用方向产生几条裂缝而破坏,测得的抗压强度就低。我国规定的标准试验方法是不涂润滑剂的。5) 加载速度对立方体强度的影响加载速度越快,测得的强度越高。通常规定
7、加载速度为:混凝土强度等级低于C30时,取每秒钟0.30.5N/mm2;混凝土强度等级高于或等于C30时,取每秒钟0.50.8N/mm2。6) 龄期对立方体强度的影响 图2-2混凝土的立方体抗压强度随着成型后混凝土的龄期逐渐增长,增长速度开始较快,后来逐渐缓慢,强度增长过程往往要延续几年,在潮湿环境中往往延续更长。7) 几点说明 施工单位按图纸规定的强度等级制作混凝土, 现场用同样的混凝土制作一定量的试块, 以检验其立方体抗压强度是否满足要求; 立方体抗压强度是在实验室条件下取得的抗压强度(标准养护试块); 结构实体的环境条件与实验室标养试块不同,标养试块立方体强度不能真实反应结构实体混凝土的
8、抗压强度,必须增加同条件养护试块立方体强度予以判定结构实体的强度; 不同尺寸试件的“尺寸效应” :fcu(200)1.05 = fcu(150) =fcu(100)0.95(2) 混凝土的轴心抗压强度 fc混凝土的抗压强度与试件的形状有关,采用棱柱体比立方体能更好地反映混凝土结构的实际抗压能力。用混凝土棱柱体试件测得的抗压强度称轴心抗压强。1) 测定的方法 图2-3我国普通混凝土力学性能试验方法规定以150mm150mm300mm的棱柱体作为混凝土轴心抗压强度试验的标准试件。棱柱体试件与立方体试件的制作条件相同,试件上下表面不涂润滑剂。棱柱体试件的抗压强度都比立方体的强度值小,并且棱柱体试件高
9、宽比越大,强度越小。2) 轴心抗压强度标准值fck 混凝土结构设计规范规定以150mm150mm300mm的棱柱体试件试验测得的具有95保证率的抗压强度为混凝土轴心抗压强度标准值,用符号fck表示。3) 轴心抗压强度标准值与立方体抗压强度标准值的关系 图2-4图2-4是根据我国所做的混凝土棱柱体与立方体抗压强度对比试验的结果。混凝土结构设计规范基于安全取偏低值,轴心抗压强度标准值与立方体抗压强度标准值的关系按下式确定:fck0.88c1c2fcu,k (2-1)式中:c1为棱柱体强度与立方体强度之比,对混凝土强度等级为C50及以下的取c1 = 0.76,对C80取c1 = 0.82,在此之间按
10、直线规律变化取值。c2为高强度混凝土的脆性折减系数,对C40及以下取c2 =1.00,对C80取c2 =0.87,中间按直线规律变化取值。0.88为考虑实际构件与试件混凝土强度之间的差异而取用的折减系数。国外常采用混凝土圆柱体试件来确定混凝土轴心抗压强度。例如美国、日本和欧洲混凝土协会(CEB)系采用直径6英寸(152mm)、高12英寸(305mm)的圆柱体标准试件的抗压强度作为轴心抗压强度的指标,记作fc。混凝土轴心 fc=0.79 fcu,k (2-2)2. 混凝土的轴心抗拉强度ft抗拉强度是混凝土的基本力学指标之一,也可用它间接地衡量混凝土的冲切强度等其他力学性能。(1)测定的方法 图2
11、-5可以采用直接轴心受拉的试验方法来测定。但是,由于混凝土内部的不均匀性,加之安装试件的偏差等原因,准确测定抗拉强度是很困难的。所以,国内外也常用如图2-5所示的圆柱体或立方体的劈裂试验来间接测试混凝土的轴心抗拉强度。根据弹性理论,劈拉强度ft,s可按下式计算: 圆柱体 ft,s2F/(d) (2-3)立方体 ft,s2P/a2 试验表明,劈裂抗拉强度略大于直接受拉强度,劈拉试件的大小对试验结果也有一定影响。轴心抗拉强度只有立方抗压强度的1/171/8,混凝土强度等级愈高,这个比值愈小。(2) 轴心抗拉强度ftk与立方体抗压强度fcu,k的关系 图2-6ftk0.880.395 fcu,k0.
12、55(1-1.645?) 0.45 2 (2-4)2.1.3 复合应力状态下的混凝土强度实际混凝土结构构件大多是处于复合应力状态,例如框架梁、柱既受到柱轴向力作用,又受到弯矩和剪力的作用。节点区混凝土受力状态一般更为复杂。同时,研究复合应力状态下混凝土的强度,对于认识混凝土的强度理论也有重要的意义。1. 双向应力状态下混凝土的强度 图2-7在两个平面作用着法向应力l和2,第三个平面上应力为零的双向应力状态下,不同混凝土强度的二向破坏包络图如图2-7所示,图中0是单轴向受力状态下的混凝土强度。一旦超出包络线就意味着材料发生破坏。(1) 双向受拉: 图中第一象限为双向受拉区,l、2相互影响不大,双
13、向受拉强度均接近于单向受拉强度。(2) 双向受压: 第三象限为双向受压区,大体上一向的强度随另一向压力的增加而增加,混凝土双向受压强度比单向受压强度最多可提高27。(3) 拉-压状态:第二、四象限为拉-压应力状态,此时混凝土的强度均低于单向拉伸或压缩时的强度。2. 法向应力与剪应力组合混凝土的强度 图2-8压应力低时,抗剪强度随压应力的增大而增大;当压应力约超过0.6 fc时,抗剪强度随压应力的增大而减小。也就是说由于存在剪应力,混凝土的抗压强度要低于单向抗压强度。另外,还可以看出,抗剪强度随着拉应力的增大而减小,也就是说剪应力的存在也会使抗拉强度降低。3. 三向受压状态下混凝土的强度混凝土在
14、三向受压的情况下,由于受到侧向压力的约束作用,最大主压应力轴的抗压强度fcc(l)有较大程度的增长,其变化规律随两侧向压应力(2,3)的比值和大小而不同。常规的三轴受压是在圆柱体周围加液压,在两侧向等压(2=3= fL0)的情况下进行的。由试验得到的经验公式为:fcc fc+(4.57.0)fL (2-5)式中 fcc 有侧向压力约束试件的轴心抗压强度;fc 无侧向压力约束试件的轴心抗压强度;fL 侧向约束压应力。公式中,fL前的数字为侧向应力系数,平均值为5.6,当侧向压应力较低时得到的系数值较高。常见工程范例:钢管混凝土柱、螺旋箍筋柱、密排侧向箍筋柱。 可提供侧向约束, 以提高混凝土的抗压
15、强度和延性。2.1.4 混 凝 土 的 变 形变形是混凝土的一个重要力学性能。包括受力变形和体积变形。受力变形: 混凝土在一次短期加载、荷载长期作用和多次重复荷载作用下产生的变形,这类变形称为受力变形。体积变形: 混凝土由于硬化过程中的收缩以及温度和湿度变化所产生的变形,这类变形称为体积变形。1.一次短期加载下混凝土的变形性能(1)混凝土受压时的应力-应变关系(-关系曲线一次短期加载是指荷载从零开始单调增加至试件破坏,也称单调加载。在普通试验机上获得有下降段的应力-应变曲线是比较困难的。若采用有伺服装置能控制下降段应变速度的特殊试验机,就可以测量出具有真实下降段的应力-应变全曲线。我国采用棱柱
16、体试件测定一次短期加载下混凝土受压应力-应变全曲线。可以看到,这条曲线包括上升段和下降段两个部分:1) 上升段(OC),又可分为三段:OA段 (0.3fc 0.4fc ):从加载至A点为第1阶段,混凝土的变形主要是弹性变形,应力一应变关系接近直线,称A点为比例极限点;AB段 (0.3fc0.8fc ):超过A点,进人裂缝稳定扩展的第2阶段,混凝土的变形为弹塑性变形,临界点B的应力可以作为长期抗压强度的依据;BC段 (0.8fc1.0fc):裂缝快速发展的不稳定状态直至峰点C,这一阶段为第3阶段,这时的峰值应力max通常作为混凝土棱柱体的抗压强度fc,相应的应变称为峰值应变0,其值在0.0015
17、0.0025之间波动,通常取0=0.002。图2-9混凝土棱柱体受压应力-应变曲线2) 下降段(CE):在峰值应力以后,裂缝迅速发展,试件的平均应力强度下降,应力-应变曲线向下弯曲,直到凹向发生改变,曲线出现“拐点(D)”。超过“拐点”,曲线开始凸向应变轴,此段曲线中曲率最大的一点E称为“收敛点”。从收敛点E开始以后的曲线称为收敛段,这时贯通的主裂缝已很宽,对无侧向约束的混凝土,收敛段EF已失去结构意义。3) 不同强度的混凝土的-关系曲线比较 图2-10 混凝土强度等级高,其峰值应变0增加不多; 上升段曲线相似; 下降段区别较大:强度等级低,下降段平缓,应力下降慢;强度等级高的混凝土,下降段较
18、陡,应力下降很快。(等级高的混凝土,受压时的延性不如等级低的混凝土)图2-10 不同强度的混凝土的应力-应变曲线比较4) 加载速度对混凝土强度试验值的影响 加载慢,最大应力值有所减小,相应于最大应力值时的应变增加; 加载快,最大应力值有所增大,相应于最大应力值时的应变减小; (2) 混凝土单轴向受压应力-应变曲线的数学模型1)美国 E.Hognestad 建议的模型模型的上升段为二次抛物线,下降段为斜直线。 上升段: (2-6)下降段: (2-7)式中 fc峰值应力(棱柱体极限抗压强度);。相应于峰值应力时的应变,取。=0.002;u极限压应变,取u =0.0038。图2-11 Hognest
19、ad 建议的应力-应变曲线2)德国Rusch建议的模型该模型形式较简单,模型的上升段也采用二次抛物线,下降段则采用水平直线。上升段: (2-8)下降段: (2-9)式中 。=0.002;u =0.0035。图2-12 Rusch建议的应力-应变曲线(3) 三向受压状态下混凝土的变形特点混凝土试件横向受到约束时,可以提高其抗压强度,也可以提高其延性。三向受压下混凝土圆柱体的轴向应力-应变曲线可以由周围用液体压力加以约束的圆柱体进行加压试验得到。随着侧向压力的增加,试件的强度和延性都有显著提高。工程上可以通过设置密排螺旋筋或箍筋来约束混凝土,改善钢筋混凝土结构的受力性能。图2-13 混凝土圆柱体三
20、向受压试验时轴向应力-应变曲线图2-14 用螺旋筋约束的混凝土圆柱体的应力-应变曲线(4) 混凝土的变形模量与弹性材料不同,混凝土受压应力-应变关系是一条曲线,在不同的应力阶段,应力与应变之比的变形模量是一个变数。混凝土的变形模量有如下三种表示方法。图2-15 混凝土变形模量的表示方法1) 混凝土的弹性模量(即原点模量)在应力-应变曲线的原点(图中的O点)作一切线,其斜率为混凝土的原点模量,称为弹性模量,以Ec表示。Ectgo (2-10)式中 o混凝土应力-应变曲线在原点处的切线与横坐标的夹角。弹性模量的测试方法:对标准尺寸150mm150mm300mm的棱柱体试件,先加载至=0.5fc,然
21、后卸载至零,再重复加载卸载5 10次。由于混凝土不是弹性材料,每次卸载至应力为零时,存在残余变形,随着加载次数增加,应力-应变曲线渐趋稳定并基本上趋于直线。该直线的斜率即定为混凝土的弹性模量。2) 混凝土的变形模量连接图2-15中O点至曲线任一点应力为c处割线的斜率,称为任意点割线模量或称变形模量。由于总变形c中包含弹性变形ela和塑性变形pla两部分,由此所确定的模量也可称为弹塑性模量。它的表达式为:Ectg1 (2-11)混凝土的变形模量是个变值,它随应力大小而不同。3)混凝土的切线模量在混凝土应力-应变曲线上某一应力c处作一切线,其应力增量与应变增量之比值称为相应于应力c时混凝土的切线模
22、量。Ectg (2-12)混凝土的切线模量也是一个变值,它随着混凝土的应力增大而减小。注意:混凝土不是弹性材料,所以不能用已知的混凝土应变乘以规范中所给的弹性模量值去求混凝土的应力。只有当混凝土应力很低时,它的弹性模量与变形模量值才近似相等。混凝土的弹性模量可按下式计算 (kN/mm2) (2-13)(5) 混凝土轴向受拉时的应力-应变关系曲线形状与受压时相似,具有上升段和下降段。试验测试表明,在试件加载的初期,变形与应力呈线性增长,至峰值应力的4050达比例极限,加载至峰值应力的7683时,曲线出现临界点(即裂缝不稳定扩展的起点),到达峰值应力时对应的应变只有7510-6 11510-6。曲
23、线下降段的坡度随混凝土强度的提高而更陡峭。受拉弹性模量与受压弹性模量值基本相同。图2-16 不同强度的混凝土拉伸应力-应变全曲线2. 荷载长期作用下混凝土的变形性能(徐变)(1)徐变的概念结构或材料承受的荷载或应力不变,而应变或变形随时间增长的现象称为徐变。混凝土的徐变特性主要与时间参数有关。1) 加荷瞬时变形ela当对棱柱体试件加载,应力达到(0.11.0)fc某一值时,其加载瞬间产生的应变为瞬时应变ela。2) 混凝土的徐变cr若保持荷载不变,随着加载作用时间的增加,应变也将继续增长,这就是混凝土的徐变cr。一般,徐变开始增长较快,以后逐渐减慢,经过较长时间后就逐渐趋于稳定。徐变应变值约为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 混凝土结构 材料 物理 力学性能 22
限制150内