离子注入和快速退火工艺(共11页).docx





《离子注入和快速退火工艺(共11页).docx》由会员分享,可在线阅读,更多相关《离子注入和快速退火工艺(共11页).docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 离子注入和快速退火工艺 离子注入是一种将带电的且具有能量的粒子注入衬底硅的过程。注入能量介于1keV到1MeV之间,注入深度平均可达10nm10um,离子剂量变动范围从用于阈值电压调整的1012/cm3到形成绝缘层的1018/cm3。相对于扩散工艺,离子注入的主要好处在于能更准确地控制杂质掺杂、可重复性和较低的工艺温度。 高能的离子由于与衬底中电子和原子核的碰撞而失去能量,最后停在晶格内某一深度。平均深度由于调整加速能量来控制。杂质剂量可由注入时监控离子电流来控制。主要副作用是离子碰撞引起的半导体晶格断裂或损伤。因此,后续的退化处理用来去除这些损伤。1 离子分布 一
2、个离子在停止前所经过的总距离,称为射程R。此距离在入射轴方向上的投影称为投影射程Rp。投影射程的统计涨落称为投影偏差p。沿着入射轴的垂直的方向上亦有一统计涨落,称为横向偏差。下图显示了离子分布,沿着入射轴所注入的杂质分布可以用一个高斯分布函数来近似:S为单位面积的离子注入剂量,此式等同于恒定掺杂总量扩散关系式。沿x轴移动了一个Rp。回忆公式: 对于扩散,最大浓度为x0;对于离子注入,位于Rp处。在(xRp)p处,离子浓度比其峰值降低了40%。在2p处则将为10%。在3p处为1%。在4p处将为0.001%。沿着垂直于入射轴的方向上,其分布亦为高斯分布,可用:表示。因为这种形式的分布也会参数某些横
3、向注入。2 离子中止使荷能离子进入半导体衬底后静止有两种机制。一是离子能量传给衬底原子核,是入射离子偏转,也使原子核从格点移出。设E是离子位于其运动路径上某点x处的能量,定义核原子中止能力: 二是入射离子与衬底原子的电子云相互作用,通过库仑作用,离子与电子碰撞失去能量,电子则被激发至高能级或脱离原子。定义电子中止能力: 离子能量随距离的平均损耗可由上述两种阻止机制的叠加而得: 如果一个离子在停下来之前,所经过的总距离为R,则 E0为初始离子能量,R为射程。核阻止过程可以看成是一个入射离子硬球与衬底核硬球之间的弹性碰撞M1转移给M2的能量为: 电子中止能力与入射离子的速度成正比: 其中系数ke是
4、原子质量和原子序数的弱相关函数。硅的ke值107(eV)1/2/cm。砷化镓的ke值为3107(eV)1/2/cm 离子中止两种机制:一是离子能量传给衬底原子核,是入射离子偏转,也使原子核从格点移出。二是入射离子与衬底原子的电子云相互作用,通过库仑作用,离子与电子碰撞失去能量,电子则被激发至高能级或脱离原子。 硅中电子中止能力如虚线所示,交叉能量点是Sn(E)=Se(E)。一旦Sn(E)和Se(E)已知,可计算处射程范围。可以用下述近似方程式来求得投影射程与投影偏差: 3 离子注入的沟道效应前述高斯分布的投影射程及投影的标准偏差能很好地说明非晶硅或小晶粒多晶硅衬底的注入离子分布。只要离子束方向
5、偏离低指数晶向,硅和砷化镓中的分布状态就如在非晶半导体中一样。在此情况下,靠近峰值处的实际杂质分布,可用“高斯分布函数”来表示,即使延伸到低于峰值一至两个数量级处也一样,这表示在下图中。然而即使只偏离晶向7度,仍会有一个随距离而成指数级exp(-x/)变化的尾区,其中的典型的数量级为0.1um。衬底定位时有意偏离晶向情况下的杂质分布。离子束从轴偏离7度入射。 指数型尾区与离子注入沟道效应有关,当入射离子对准一个主要的晶向并被导向在各排列晶体原子之间时,沟道效应就会发生。图为沿方向观测金刚石晶格的示意图。离子沿方向入射,因为它与靶原子较远,使它在和核碰撞时不会损伤大量能量。对沟道离子来说,唯一的
6、能量损伤机制是电子阻止,因此沟道离子的射程可以比在非晶硅靶中大得多。4 离子进入的角度及通道 沟道效应降低的技巧1、覆盖一层非晶体的表面层、将硅芯片转向或在硅芯片表面制造一个损伤的表层。常用的覆盖层非晶体材料只是一层薄的氧化层图(a),此层可使离子束的方向随机化,使离子以不同角度进入硅芯片而不直接进入硅晶体沟道。2、将硅芯片偏离主平面5-10度,也能有防止离子进入沟道的效果图(b)。此方法大部分的注入机器将硅芯片倾斜7度并从平边扭转22度以防止沟道效应。3、先注入大量硅或锗原子以破坏硅芯片表面,可在硅芯片表面产生一个随机层图(c),这种方法需使用昂贵的离子注入机。 5 注入损伤与退火 离子注入
7、中,与原子核碰撞后转移足够的能量给晶格,使基质原子离开晶格位置而造成注入损伤(晶格无序)。这些离位的在也许获得入射能量的大部分,接着如骨牌效应导致邻近原子的相继移位而形成一个沿着离子路径的树枝状的无序区。当单位体积内移位的原子数接近半导体的原子密度时,单晶材料便成为非晶材料。 轻离子的树枝状的无序区不同于重离子。轻离子(11B+)大多数的能量损伤起因于电子碰撞,这并不导致晶格损伤。离子的能量会减低至交叉点能量,而在那里核阻止会成为主导。因此,晶格无序发生在离子最终的位置附近。如下图(a)所示。 重离子的能量损失主要是原子核碰撞,因此预期有大量的损伤。如下图(b)所示。 要估计将单晶转变为非晶材
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离子 注入 快速 退火 工艺 11

限制150内