直线与平面垂直的判定-教学设计(共11页).doc
《直线与平面垂直的判定-教学设计(共11页).doc》由会员分享,可在线阅读,更多相关《直线与平面垂直的判定-教学设计(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上直线与平面垂直的判定 教学设计一、内容和内容解析 直线与平面垂直的定义:如果直线与平面内的任意一条直线都垂直,就称直线与平面互相垂直。定义中的“任意一条直线”就是“所有直线”。直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。定理体现了转化的数学思想:将“直线与平面垂直”的问题转化为“直线与直线垂直”的问题。直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中线线垂直位置关系的拓展,又是面面垂直的基础,是空间中垂直位置关系间转化的重心,同时它又是直线和平面所成的角等内容的基础,因而它是点、直线、平面间位置关系中的核心概念之
2、一。对直线与平面垂直的定义的研究遵循“直观感知、抽象概括”的认知过程展开,而对直线与平面垂直的判定的研究则遵循“直观感知、操作确认、归纳总结、初步运用”的认知过程展开,通过该内容的学习,能进一步培养学生空间想象能力,发展学生的合情推理能力和一定的推理论证能力,同时体会“平面化”思想和“降维”思想。重点:直观感知、操作确认,概括出直线与平面垂直的定义和判定定理。二、目标和目标解析目标:理解直线与平面垂直的意义,掌握直线与平面垂直的判定定理。目标解析:1、借助对图片、实例的观察,抽象概括出直线与平面垂直的定义。2、通过直观感知、操作确认,归纳、概括出直线与平面垂直的判定定理。3、能运用直线与平面垂
3、直的判定定理,证明与直线和平面垂直有关的简单命题:在平面内选择两条相交直线,证明它们与平面外的直线垂直。4、能运用直线与平面垂直定义证明两条直线垂直,即证明一条直线垂直于另一条直线所在的平面。三、问题诊断分析 学生已经学习了直线、平面平行的判定及性质,学习了两直线(共面或异面)互相垂直的位置关系,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的空间想象能力、几何直观能力和推理论证能力。在直线与平面垂直的判定定理中,为什么至少要两条直线,并且是两条相交直线,学生的理解有一定的困难,因为定义中“任一条直线”指的是“所有直线”,这种用“有限”代替“无限”的过程导致学生形成理解上的
4、思维障碍。同时,由于学生的空间想象能力、推理论证能力有待进一步加强,在直线与平面垂直判定定理的运用中,不知如何选择平面内的两条相交直线证线面垂直(抑或选择平面证线面垂直从而得到线线垂直)导致证明过程中无从着手或发生错误。教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。四、教学支持条件分析为了有效实现教学目标,条件许可准备投影仪,多媒体课件,三角板。学生自备学具:三角形纸片、铁丝、三角板。 五、教学过程设计(一)、观察归纳直线与平面垂直的定义1、直观感知问题1:请同学们观察图片,说出旗杆与地面、大桥桥柱与水面是什么位置关系?你能举出一些类似的例子吗?设计意图:从实际背景出发,直观感
5、知直线和平面垂直的位置关系,使学生在头脑中产生直线与地面垂直的初步印象,为下一步的数学抽象做准备。师生活动:观察图片,引导学生举出更多直线与平面垂直的例子,如教室内直立的墙角线和地面位置关系,桌子腿与地面的位置关系,直立书的书脊与桌面的位置关系等,由此引出课题。2、观察思考思考:如何定义一条直线与一个平面垂直呢?我们已经学过直线和平面平行的判定和性质,知道直线和平面平行的问题可转化为考察直线和平面内直线平行的关系, 直线和平面垂直的问题同样可以转化为考察一条直线和一个平面内直线的关系,然后加以解决。问题2:(1)如图1,在阳光下观察直立于地面旗杆AB及它在地面的影子BC,旗杆所在的直线与影子所
6、在直线位置关系是什么?(2)旗杆AB与地面上任意一条不过旗杆底部B的直线B1C1的位置关系又是什么?设计意图:引导学生用“平面化”的思想来思考问题,通过观察,感知直线与平面垂直的本质属性。师生活动:教师用多媒体课件演示旗杆在地面上的影子随着时间的变化而移动的过程,引导学生得出旗杆所在直线与地面内的直线都垂直。3、抽象概括问题3、通过上述观察分析,你认为应该如何定义一条直线与一个平面垂直?设计意图:让学生归纳、概括出直线与平面垂直的定义。师生活动:学生思考作答,教师补充完善,指出定义中的“任意一条直线”与“所有直线”是同意词,定义是说这条直线和平面内所有直线垂直。同时给出线面垂直的记法与画法。定
7、义:如果直线l与平面内的任意一条直线都垂直,我们就说直线 l与平面互相垂直,记作: l.直线l叫做平面的垂线,平面叫做直线l的垂面直线与平面垂直时,它们唯一的公共点P叫做垂足。画法:画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直,如图2。4、辩析举例辨析:下列命题是否正确,为什么? (1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直。(2)如果一条直线垂直一个平面,那么这条直线就垂直于这个平面内的任一直线。设计意图:通过问题辨析,加深概念的理解,掌握概念的本质属性。由(1)使学生明确定义中的“任意一条直线”是“所有直线”的意思,定义的实质就是直线与平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 平面 垂直 判定 教学 设计 11
限制150内