电池部件的结构表征.docx





《电池部件的结构表征.docx》由会员分享,可在线阅读,更多相关《电池部件的结构表征.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、电池部件的结构表征1 为什么要测试电池材料的比表面积、孔径、孔容和密度 电池行业的研发人员一直在寻找最安全有效的电池技术来满足当今和未来世界的能源需求。为了优化设计,电池研发人员更加需要准确地表征负极、正极和隔膜等电池部件的物理性质。这些性质包括比表面积、孔径、孔容、孔隙率(开孔率)和密度。1.1 比表面积对于正负极以及隔膜材料来说,比表面积是一个重要的特性指标。比表面积的差异会影响电池的容量、阻抗、充电放电速率等性能。如果样品比表面积测试结果与预期的比表面积不同,那么可以说明供应商提供的材料纯度或者粒径不符合要求。通常,使用BET比表面积测量法评估电池部件的比表面积,它可以测试极低比表面积,
2、最低可至0.01 m2/g。对于BET比表面积的测量,有静态压力法或者动态流动法两种测试方法供选择。1.2 孔径和孔容对于电池材料来说,孔径分布也同样重要。例如,某电极材料的孔径分布发生变化,可能导致材料在实际使用过程中的发生相变或结构变化。这些测试结果也可用于确定材料的压缩和退火温度与其孔径分布之间的关系。孔容也是一个重要的性质。例如,电池隔膜必须有足够的孔容才能容纳足够的电解液。这样的电池隔膜才有良好的导电性。通常使用压汞法和气体吸附法测试以上材料性质。依照材料的孔径范围选取不同的测试方法。气体吸附法可用于测试微孔材料(d5 nm)和大孔材料(d50 nm)可采用压汞法。1.2.1 通孔尺
3、寸和渗透性对于电池隔膜来说,通孔(两端连通的孔)的孔径分布在某些情况下可能比孔径分布更重要。利用毛细管流动法可以对通孔进行表征,还可以进行渗透性分析来了解孔隙的结构性质。例如,一个弯曲的孔道有助于将正极材料及负极材料隔开,但也增加了隔膜产生的有效电阻,从而降低了电池效率和寿命。1.3 密度由于电池装置的工作空间有限,容量就成为了一个重要的性能指标。电极材料本身所占的体积以及相应的内部自由空间的大小(通常称为材料的孔隙度),是预测电池性能的必要参数。在检测电极原材料时,常需要知道该粉末的质量体积比值信息,振实密度分析仪就可以用来提供该信息。其中的体积包括颗粒内部和颗粒之间的空间。气体置换法用于测
4、量材料的真实密度或骨架密度,它排除了任何可接触到样品外部的孔隙的影响。对于规则形状的样品,由于可以测量边长,孔隙率可以直接从气体比重数据中计算出来。对于粉末或不规则形状的样品,通过气体置换法所测得的体积和密度通常需要与其他技术相结合,比如气体吸附或压汞仪,它们可以提供完整的孔隙体积信息,从而确定材料的孔隙率。2 应用实例2.1 正负极材料的比表面积测定石墨负极和金属氧化物正极材料(LiNiCoMnO2)的比表面积可使用N2,77k下的BET比表面积进行表征,其线性范围为P/P0= 0.05-0.3,如图1所示。计算得出负极的比表面积为2.5 m2/g,正极的比表面积为1.5 m2/g。图1 N
5、ovaTouch 在N2(77K)条件下测试的由石墨(负极,上图)和LiNiCoMnO2(正极,下图)的吸附等温线导出的BET比表面积图2.2 隔膜的比表面积和孔径测试采用压汞法对由聚偏二氟乙烯(PVDF)组成的电池隔膜的孔径和孔容进行表征(如图2)。压汞仪所得的孔径分布包括了材料中的通孔和盲孔,代表了隔膜内所有大介孔(d:2-50 nm)和大孔(d50 nm)的分布。通过结合汞侵入孔隙的体积与氦比重计测量的骨架密度可以获得孔隙信息。图2 PoreMaster 60测得的PVDF隔膜的侵入及脱出曲线(上图)及其相应的孔径分布图(下图)为了确定通孔的孔径分布范围,还使用Porometer对薄膜进
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电池 部件 结构 表征

限制150内