知识讲解-正弦定理-提高(共11页).doc
《知识讲解-正弦定理-提高(共11页).doc》由会员分享,可在线阅读,更多相关《知识讲解-正弦定理-提高(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上正弦定理编稿:李霞审稿:张林娟【学习目标】1.通过对直角三角形边角间数量关系的研究,发现正弦定理,初步学会运用由特殊到一般的思维方法发现数学规律;2.会利用正弦定理解决两类解三角形的问题;(1)已知两角和任意一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而求出其它边角). 【要点梳理】要点一:学过的三角形知识1.中(1)一般约定:中角A、B、C所对的边分别为、;(2);(3)大边对大角,大角对大边,即; 等边对等角,等角对等边,即;(4)两边之和大于第三边,两边之差小于第三边,即,.2.中,(1),(2)(3),;,要点二:正弦定理及其证明
2、正弦定理:在一个三角形中各边和它所对角的正弦比相等,即:直角三角形中的正弦定理的推导证明:, , ,即:, 斜三角形中的正弦定理的推导证明:法一:向量法(1)当为锐角三角形时过作单位向量垂直于,则+= 两边同乘以单位向量,得(+)=,即, ,同理:若过作垂直于得: ,(2)当为钝角三角形时设,过作单位向量垂直于向量,同样可证得:法二:构造直角三角形(1)当为锐角三角形时如图,作边上的高线交于,则:在中, ,即,在中, ,即,,即.同理可证(2)当为钝角三角形时如图,作边上的高线交于,则:在中, ,即,在中, ,即,,即.同理可证法三:圆转化法(1)当为锐角三角形时如图,圆O是的外接圆,直径为,
3、则,(为的外接圆半径)同理:,故:(2)当为钝角三角形时如图,.法四:面积法任意斜中,如图作,则同理:,故,两边同除以即得:要点诠释:(1)正弦定理适合于任何三角形;(2)可以证明(为的外接圆半径);灵活利用正弦定理,还需知道它的几个变式,比如: ,,等等.要点三:利用正弦定理解三角形一般地,我们把三角形的各内角以及它们所对的边叫做三角形的几何元素.任何一个三角形都有六个元素:三边和三角.在三角形中,由已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.利用正弦定理,可以解决以下两类有关三角形的问题:(1)已知两角和一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,
4、然后再进一步求出其他的边和角.要点诠释:已知a,b和A,用正弦定理求B时的各种情况;(1)若A为锐角时:如图:(2)若A为直角或钝角时:判断三角形形状判断三角形形状的思路通常有以下两种:(1)化边为角;(2)化角为边.对条件实施转化时,考虑角的关系,主要有:(1)两角是否相等?(2)三个角是否相等?(3)有无直角、钝角?考查边的关系,主要有:(1)两边是否相等?(2)三边是否相等?要点诠释:对于求解三角形的题目,一般都可有两种思路。但要注意方法的选择,同时要注意对解的讨论,从而舍掉不合理的解。比如下面例2两种方法不同,因此从不同角度来对解进行讨论。此外,有的时候还要对边角关系(例如,大边对大角
5、)进行讨论从而舍掉不合理的解.【典型例题】类型一:正弦定理的简单应用:【高清课堂:正弦定理 例1】例1已知在中,求和B.【思路点拨】本题考查正弦定理及特殊角的三角函数值,三角形中边与角的对应关系等。由正弦定理列出边a满足的方程,再根据三角形内角和来确定角B的值。【解析】, , ,又,【总结升华】1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三:【变式1】在中,已知,求、.【答案】,根据正弦定理,.【变式2】在中,若,则等于 ( )A. B. C. 或 D. 或【答案】由可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识 讲解 正弦 定理 提高 11
限制150内