数学归纳法与数列的极限(答案).doc
《数学归纳法与数列的极限(答案).doc》由会员分享,可在线阅读,更多相关《数学归纳法与数列的极限(答案).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十二讲:数学归纳法与数列的极限知识小结:4.数列的极限:一般地,在无限增大的变化过程中,如果无穷数列中的项无限趋近于一个常数A,那么A叫做数列的极限,或叫做数列收敛于A,记作。注意点:1)只有无穷数列,当趋近于无穷大时,无限趋近于某一常数;2)对于数列,当无穷增大时,无限趋近于某一定值时,是通过无限趋近于零来描述的。这里无限趋近于零,是指不论取一个值多么小的正数(可以任意给定),总可以通过取充分大以后,使充分接近于零,如果这个任意小的正数用来表示,那么当充分大时,总有。3)极限值只有一个值,如趋近于两个值一定没有极限。5.极限的运算性质性质:2)几个重要极限: 6.无穷等比数列各项和的和的概
2、念:我们把的无穷等比数列前项和,当无穷增大时的极限叫做无穷等比数列各项的和,并用符号表示,即注意点:1)只有当且时,才能代入上述公式;2)实际上可推出:;3)化循环小数为分数可分解成一个等比数列的各项和的形式,或者可直接化为分数:如;例2、求极限: 例4、定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.已知无穷等比数列的首项、公比均为.(1)试求无穷等比子数列()各项的和;(2)是否存在数列的一个无穷等比子数列,使得它各项的和为?若存在,求出所有满足条件的子数列的通项公式;若不存在,请说明理由;解:(1)依条件得: 则无穷等比数列各项的和为: ; (2)解法
3、一:设此子数列的首项为,公比为,由条件得:,则,即 而 则 .所以,满足条件的无穷等比子数列存在且唯一,它的首项、公比均为,其通项公式为,.解法二:由条件,可设此子数列的首项为,公比为.由 又若,则对每一都有 从、得;则;因而满足条件的无穷等比子数列存在且唯一,此子数列是首项、公比均为无穷等比子数列,通项公式为,.例5:(1)(03年上海数学高考)已知其中为正整数,设表示外接圆的面积,则 。解:此题一般地考虑方法是先求出的外接圆的方程,然后得出圆的面积,最后求得的结果,但整个过程的计算比较烦琐,很容易导致计算出错。但如果从极限的思想出发,首先考虑的是当时这三个点的变化的位置,趋于原点,点趋于然
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 归纳法 数列 极限 答案
限制150内