经典高考概率分布类型题归纳(共34页).doc
《经典高考概率分布类型题归纳(共34页).doc》由会员分享,可在线阅读,更多相关《经典高考概率分布类型题归纳(共34页).doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 经典高考概率分布类型题归纳高考真题1、 超几何分布类型2、 二项分布类型三、超几何分布与二项分布的对比四、古典概型算法五、独立事件概率分布之非二项分布(主要在于如何分类)六、综合算法高考真题2010年22、 (本小题满分10分)(相互独立事件)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。(1) 记X(单位:万元)为生产1件甲产品和1件乙产品
2、可获得的总利润,求X的分布列;(2) 求生产4件甲产品所获得的利润不少于10万元的概率。【解析】本题主要考查概率的有关知识,考查运算求解能力。满分10分。(1)由题设知,X的可能取值为10,5,2,-3,且 P(X=10)=0.80.9=0.72, P(X=5)=0.20.9=0.18, P(X=2)=0.80.1=0.08, P(X=-3)=0.20.1=0.02。 由此得X的分布列为:X1052-3P0.720.180.080.02(2)设生产的4件甲产品中一等品有件,则二等品有件。 由题设知,解得, 又,得,或。所求概率为答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。
3、(2012年)22(本小题满分10分)(古典概型)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时, (1)求概率; (2)求的分布列,并求其数学期望【命题意图】本题主要考查概率分布列、数学期望等基础知识,考查运算求解能力.【解析】(1)若两条棱相交,则交点必为正方形8个顶点中的一个,过任意一个顶点恰有3条棱,共有对相交棱, =.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,故=,=.随机变量的分布列是01P .(2014江苏)(古典概型)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜
4、色外完全相同(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X)(2017年)23(本小题满分10分) 已知一个口袋中有个白球,个黑球(),这些球除颜色外全部相同现将口袋中的球随机地逐个取出,并放入如图所示的编号为的抽屉内,其中第次取出的球放入编号为的抽屉123 (1)试求编号为2的抽屉内放的是黑球的概率; (2)随机变量表示最后一个取出的黑球所在抽屉编号的倒数,是的数学期望,证明:试题解析:(1)编号为2的抽屉内放的是黑球的
5、概率为:(2)随机变量X的概率分布为XP随机变量X的期望为所以,即【考点】古典概型概率、排列组合、随机变量及其分布、数学期望【名师点睛】求解离散型随机变量的数学期望的一般步骤为:(1)“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;(2)“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;(3)“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)“求期望值”,一般利用离散型随机变量的数学期
6、望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得因此,应熟记常见的典型分布的期望公式,可加快解题速度一、超几何分布1.袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球试求得分X的分布列【提示】从袋中随机摸4个球的情况为1红3黑,2红2黑,3红1黑,4红四种情况,分别得分为5分,6分,7分,8分,故X的可能取值为5,6,7,8.来源:学。科。网P(X5),P(X6),P(X7),P(X8).故所求的分布列为X5678P2.PM2.5是指
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经典 高考 概率 分布 类型 归纳 34
限制150内