半导体激光器的发展历程2(精)025643.pdf
《半导体激光器的发展历程2(精)025643.pdf》由会员分享,可在线阅读,更多相关《半导体激光器的发展历程2(精)025643.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!广西师范学院 2017 年 本科毕业论文 论文题目 半导体激光器的发展历程 毕 业 生:吴 伊 琴 指导老师:王*学科专业:物理学(师范)目录 摘要 前言 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!一 理论基础及同质结半导体激光器(1917-1962)1.1 激光理念及激光技术的面世 1.2 早期半导体激光器理念提出与探索(1953-1962)二异质结半导体激光器(1963-1977)2.1 单异质(SH)激光器 2.2 双异质(DH)激光器
2、 三半导体激光器实用领域的探索(1980-2005)3.1 光纤通信与半导体激光器的相辅相成 3.2 量子阱能带工程技术的引入 4.1 半导体激光器应用的多样化 4.2 半导体激光器的未来发展 结语 参考文献 摘要 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!双异质半导体激光器,量子阱技术,应变量子阱激光器,DFB激光器,面发射激光器,大功率激光器等等突破性研究成果的面世,使得半导体激光器已经占据了激光领域市场的大壁江山,以及成为了军事,医疗,材料加工,印刷业,光通信等等领域不可或缺的存在。本文梳理了 1917年2008年半导体激光器的发展
3、历程,文中包括了半导体激光器大多研究成果,按照时间线对其进行整理。总的说来,半导体激光器的发展历程可以分为 4个阶段 第一理论准备及起步阶段(1917-1962)。1962年同质结半导体激光器研制成功。尽管同质结半导体激光器没有实用价值,但是它面世是半导体激光器发展历程中重要的标志,其基本理论是后来半导体激光器前进的基础。第二大发展期(1962-1979 长寿命,长波长双异质半导体激光器的面世使得半导体激光器能够满足光纤通信的需求。1978-1979年,国际上关于通过改进器件结构提高器件稳定性,降低损耗的研究成果非常多。由于对 AlGaAsGaAs 激光器特性的不断进步的追求,使得这个时期出现
4、了许多新的制造工艺,新的结构理念,为之后发展长波长半导体激光器留下了充足的技术支持。第三实用性的初步探索(1980-1990)在这期间半导体激光器的实用领域主要集中于光纤通信领域,由于光纤通信技术的不断发展,使得半导体激光器的发展也极其迅猛。第四实用的多样化(1990-2008 由于量子阱技术,应变量子阱激光器,DFB激光器,面发射激光器,大功率激光器等等突破性研究成果的面世,半导体激光器的实用领域覆盖了军事,医疗,材料加工,印刷业,光通信等等领域。本文按照时间线将半导体激光器的发展历程梳理了一遍,使得半导体激光器的发展脉络更加清晰,时候其发展历程更加具体,明了。关键词:激光 半导体激光器 应
5、用多样化 发展方向 前言 激光,英文名为“laser”是 20世纪以来,目前在人类科技进步史上与原子能,计算机,半导体并驾齐驱的重大发明。其发展动向对于人类的科技,生活等等方面有着重要的影响。欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!半导体激光器就是以半导体材料作为激光工作物质的一类激光器的总称。半导体激光器具有体积小,重量轻;波长范围广,相干性高,适宜大量生产,半导体激光器在 20 世纪 80年代初期其主要应用领域是在光纤通信技术方面的,并且在如今半导体激光器仍然是光通信领域不可或缺,至关重要的存在。20世纪 90 年代开始,由于光电子
6、技术的不断成熟,各个领域对于光电子技术需求越来越高,使得光电子技术的实用领域不断扩大,半导体激光器在各个领域里的用武之地也越多。并且随着对半导体激光器的研究不断深入,半导体激光器已经占据了激光领域市场的大壁江山,以及成为了军事,医疗,材料加工,印刷业,光通信等等领域不可或缺的存在。笔者在查询半导体激光器的发展历程是发现虽然关于半导体激光器发展的文献较多,但是这些文献中关于半导体激光器的发展时间线不够清晰,而且多数是按照大功率,量子阱等等方面分开描述,对于半导体激光器总体的发展历程的描述不够清晰,已有的文献对于半导体激光器的发展框架的描述较为清晰,但是还是会有一些不够清晰的点:1.1977 年以
7、前半导体激光器早期的发展方向是什么?2.是光纤通信技术成就了半导体激光器还是半导体激光器成就了现在的光通信技术?3.半导体激光器的研究成果有着什么样的意义?为了回答这些问题笔者查阅了许多相关文献,将 1917年-2008年期间半导体激光器的发展历程重新梳理,按照时间线整理好争取形成一条较为清晰发展脉络。一 理论基础及同质结半导体激光器(1917-1962)1.1 激光理念及激光技术的面世 1.1.1 激光理念 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!激光,英文名为“laser”。源于 Light Amplification by Sti
8、mulated Emission of Radiation 这句话中由每个单词首字母组成的缩写词,意思是“通过辐射的受激辐射光放大”。作为 20 世纪以来,目前在人类科技进步史上与原子能,计算机,半导体并驾齐驱的重大发明,激光的许多特性对于社会进步有着巨大的影响。激光被人们称为 20 世纪最亮的光,最准的尺,最快的刀,由此可看出激光亮度激光,定向发光能力极强,能量之大等等特性。概括说来激光有四大特性,即高亮度,高相干性,高方向性,高单色性。也是激光的这些特性使它拥有了其他普通光源不可企及的能力。也正是因为这些特性,现如今激光在医学,军事,通信,快速成型技术,显示技术,材料加工等领域取得了巨大的
9、成就,也是由于激光的便利,使得其在社会中得到了快速的普及,逐渐渗透进我们日常的工作及生活中。1.1.2 激光技术的发展 爱因斯坦是在 1916 年发布了关于辐射的量子理论一文。在该文中受激辐射理论指出,处于高能态的粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。“受激辐射”理论为激光提供了物理基础。但是由于当时并没有关于光量大化的实际应用的科学探索,所以受激辐射的概念在当时没有得到重视,爱因斯坦本人也没有对其进行进一步的研究,此后大约 40 年的时间里都没有人进行激光技术的研究工作。但是,在二战期间,由于雷达在战争
10、中的广泛应用及重大作用,如何提高雷达的性能成为了当时国际的研究重点,也正是如此,受激辐射这一概念得到了相应的关注,开始有科学家进行激光技术的相应研究。利用受激辐射来放大电磁波的概念被提出。1953 年美国物理学家汤斯(Charles hard Townes)和阿瑟肖洛制成了激光器的前身:第一台微波量子放大器,获得了高度相干的微波束。该机器的成功研制激发了人们对于激光技术更深层次的研究。汤斯(Charles hard Townes)和阿瑟肖洛(Schawlow)在 1958 年成功的观测到激光现象,并且在同年 12 月,美国物理学家汤斯(Charles hard Townes)与阿瑟肖洛(A.L
11、.Schawlow)在物理评论上发表了红外与光学激射器 一文,提出了“激光原理”以及“激光”的概念。他们指出在物质受到与其分子固有振荡频率相同的能量激发时,会产生一种不发散的强光,这束强光就是激光。此后对于激光,激光器的研究正式进入正轨。1958年美国物理学家汤斯(Charles hard Townes)与阿瑟肖洛(A.L.Schawlow)提出了开放式光谐振腔的概念,抛弃了之前的封闭式谐振腔的模式,对于激光以及激光器的研究又是一个新的阶段。此后在科学家们对于激光的不断改进和创新中,激光的研究成果不断更新,终于在 1960 年 5 月美国科学家梅曼(T.H.Maiman)获得了人类史上的第一束
12、激光(长 0.6943m),并且在同年 7月成功研制出世界上第一台激光器(红宝石脉冲激光器(固体激光器)。从此“激光技术”正式走向世界科学的舞台。欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!1.2 早期半导体激光器理念提出与探索(1953-1962)1.2.1 理论基础 要想获得激光,选择合适的激光材料是至关重要的。不同的激光工作物质(激光材料)形成的激光器被分为不一样的类型,有着不同的特性。而半导体由于其独特的特性,早在 1953 年就已经有人对其是否能够产生激光进行了一定的讨论及研究,此后关于半导体材料的受激激发的研究一直在不断的深入。
13、1956 年-1958年,艾格瀚等科学家开始讨论半导体激光器的合理性和可能性,提出了许多设想及可能,但是这些大多只是在理论方面的设想,对于具体的操作实践还没有得到解决。1958 年-1960年,经过博伊尔,拉克斯等科研工作者的不断努力,关于半导体激光器的研究成果不断更新,在此期间发现相比起间接带隙半导体,直接带隙半导体更容易获得相应的相干光,相应的光谐振腔的技术也有了极大的改进。1961 年,杜拉弗格和伯纳德正式清晰的提出了关于半导体实现粒子数反转的必要条件,提出了利用直接,间接带隙半导体材料制造激光器的理念。为 1962 年半导体激光器的成功研制提供了重要的理论基础。杜拉弗格和伯纳德正式清晰
14、的提出了关于半导体实现粒子数反转的必要条件后,次年 3 月,在美国举办的物理学会议上,梅贝格做出了在 77k 的环境中 GaAs 材料电致发光的效率有可能较高的报告,随后这一设想得到了证实。在 1962 年 7月英国举办的固体器件研究会议上,美国麻省理工学院林肯实验室的奎斯特(Quist)和克耶斯(Keyes)发布了在 77k的环境中 GaAs材料电致发光的效率极高,接近于100%的研究成果。该成果的发布为研制注入型半导体激光器解决了辐射效率的问题,也为此种半导体激光器的成功研制创造了条件。1.2.2 GaAs 半导体激光器的研制过程 美国通用电气研究实验室工程师霍尔参加了 1962年的固体器
15、件研究会议,奎斯特(Quist)和克耶斯(Keyes)的报告引起了他极大的兴趣,霍尔之前一直在进行对于半导体激光器的研究,但是一直没有突破。这次的报告给了他极大的灵感,对于半导体激光器的研究有了新的计划。霍尔回到实验室后立即制定了关于研制半导体激光器的计划,与芬纳等研究人员一起投入到半导体激光器的研制工作中。在霍尔小组的如火如荼的研究过程中,同年 8月,那赛德福发布了观察到光谱轻微变窄的消息并发表了相应的文章。该文章的发布使得霍尔小组的研究压力有所减轻,也让霍尔小组意识到光反馈的重要性。同年 9月,霍尔小组对于谐振腔有了新的概念,他们采取了新型的谐振腔结构,并且成功的观察到 GaAs受激辐射的
16、现象。GaAs半导体激光器成功研制出来了。经过对实验结果的再三确认和对实验数据的整理,欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!1962年 11月,霍尔小组在物理评论快报上公布了其研究成果。在其发布一个月内,陆续有三个实验室先后宣布成功获得相干光发射的消息。这四所实验所研制出的都是同质结半导体激光器,他们使用的材料相同,谐振腔的结构也相同。同质结半导体激光器的成功研制是半导体激光器发展历程中重要的标志,其基本理论是后来半导体激光器前进的基础。但是由于同质结半导体激光器的临界电流高以及其只能在 77k的环境下工作,所以可以说同质结半导体激光
17、器没有实用价值。为了实现半导体激光器的实用性,在同质结半导体激光器成功研制不久,异质结半导体激光器的研究也马不停蹄的开始了。二异质结半导体激光器(1963-1977)2.1 单异质(SH)激光器 由于同质结半导体激光器不能再室温下实现连续受激激发,这导致了其实用性几乎为零,但是科学研究是为了更好的服务社会,所以为了加强半导体激光器的实用性,就需要实现其在室温情况下的连续受激激发。这也是半导体激光器在此期间的主要研究方向。GaAs半导体激光器成功研制的次年,也就是 1963年,科勒莫(H.KROEMER)及其他科学家提出异质结构半导体激光器的概念,异质结半导体激光器由两种不同带隙的半导体材料薄层
18、组成“结”能够有效的降低临界电流密度,提高工作效率,最重要的是可以提高工作温度,有很大的可能实现其室温条件下的连续工作。但是由于当时没有合适的晶体材料,导致异质结半导体激光器的研究出现停滞。直到 1967年的半导体激光器会议上,会议中提出 AlxGa1-xAs 和 GaAs这两种材料的匹配度欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!较高,随后贝尔实验室的潘尼斯和哈亚西通过液相外延技术,将 AlxGa1-xAs 作为GaAs外延层,成功研制出了单异质结半导体激光器。1969 年潘尼斯和哈亚西公布了其研究成果。与同质结半导体激光器相比,该激光
19、器的临界电流密度有了大幅度的下降,但是很遗憾,其临界电流密度仍然较高,所以该激光器没有实现在室温条件下的连续受激激发的研究目标。虽然单异质结半导体激光器没有实现室温下的连续受激激发,但是异质结结构的成功应用以及液相外延技术的成功应用都为接下来双异质结半导体激光器的研发工作提供了重要的理论基础和技术支持。2.2 双异质(DH)激光器 2.2.1 AlxGa1-xAsGaAs 激光器研究历程 虽然单异质半导体激光器没有实现研究目标,但是利用异质结构来实现半导体激光器临界电流密度的降低以及室温条件下的连续工作的研究目标这个方向是正确。单异质结构不可以,科学家们就开始提出双异质结构的概念。其实在单异质
20、半导体激光器的研制后期,关于双异质半导体激光器的研制工作就已经开始。在 SH半导体激光器的研究进展中后期 Leningrad Ioffe研究所已经开始着手进行双异质半导体激光器(AlxGa1-xAs-GaAs)的研究,并且在 1969年 9月就发布了其研究成果,但是还是没有实现研究目标(室温条件下的连续工作)。贝尔实验室的潘尼斯和哈亚西在 1968年后期也开始进行 DH激光器的研究,经过不断的实验及改进,1970年初贝尔实验室大大降低了双异质半导体激光器的临界电流密度,成功实现在室温条件下的连续受激激发,DH激光器面世。并于同年 8月将实验成果在Applied Physics Letters
21、上发布。同年 5月,Leningrad Ioffe 研究所也成功实现室温下连续受激发射。双异质半导体激光器的成功研制,使得半导体激光器实现了室温条件下的连续受激发射,也是半导体激光器能够走向实用领域的基础,使得半导体激光器有了一定的实验价值,也开启了半导体激光器发展的新阶段,使得半导体激光器未来的研究方向往实用方面转变。2.2.2 AlxGa1-xAsGaAs 短波长激光器室温下连续长时间工作的实现 1970 年,双异质结半导体激光器研制成功,降低了半导体激光器的临界电流密度,实现了室温下的连续受激发射。该半导体激光器尽管实现了室温下的连续工欢迎您阅读并下载本文档,本文档来源于互联网整理,如有
22、侵权请联系删除!我们将竭诚为您提供优质的文档!作,但是要将半导体激光器运用到实际中还有一个迫切需要解决的问题,那就是器件的长寿命性,稳定性(可靠性。1970年制造出的第一台 DH激光器的虽然能够在室温下连续工作,但是工作寿命极短,而且稳定性也不够。如果不具备真正的实用性,也正是因为如此,之后几年时间里国际科研人员们一直在研究如何延长半导体激光器的工作时间,追求半导体激光器的长寿命以及稳定性。经过科研人员的不断努力,不断改进器件的结构,使得半导体激光器的工作寿命不断延长。终于在 1977 年成功实现双异质短波长半导体激光器的连续工作时间达到了 1106 个小时。半导体激光器的稳定性,长寿命性对于
23、光纤通信的发展有着极其重要的作用。为了提高半导体激光器的稳定性,国际上进行了许多关于这个方面的研究。1978-1979年,国际上关于通过改进器件结构提高器件稳定性,降低损耗的研究成果非常多。比如说美国的 CDH激光器,日本的 BH激光器,TJS 激光器,CDH激光器等等,而且这些都实现了温室下连续受激激发以及单模化工作。可以说这个时期国际上对于半导体激光器的研究都集中与 AlGaAsGaAs 激光器的不断进步及改革中,着力于其质量,特性,结构的不断提高和改良。由于对 AlGaAsGaAs 激光器特性的不断进步的追求,使得这个时期出现了许多新的制造工艺,新的结构理念,为之后发展长波长半导体激光器
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 半导体激光器 发展 历程 025643
限制150内