第4讲 微分方程优秀课件.ppt
《第4讲 微分方程优秀课件.ppt》由会员分享,可在线阅读,更多相关《第4讲 微分方程优秀课件.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第4讲 微分方程第1页,本讲稿共30页求微分方程的数值解求微分方程的数值解(一)常微分方程数值解的定义(一)常微分方程数值解的定义(二)建立数值解法的一些途径(二)建立数值解法的一些途径(三)用(三)用Matlab软件求常微分方程的数值解软件求常微分方程的数值解返 回第2页,本讲稿共30页1、目标跟踪问题一:导弹追踪问题、目标跟踪问题一:导弹追踪问题 2、目标跟踪问题二:慢跑者与狗、目标跟踪问题二:慢跑者与狗3、地中海鲨鱼问题、地中海鲨鱼问题返 回数学建模实例数学建模实例第3页,本讲稿共30页微分方程的解析解微分方程的解析解 求微分方程(组)的解析解命令:dsolve(方程方程1,方程方程2,
2、方程方程n,初始条件初始条件,自变量自变量)To Matlab(ff1)结 果:u=tg(t-c)第4页,本讲稿共30页 解解 输入命令:y=dsolve(D2y+4*Dy+29*y=0,y(0)=0,Dy(0)=15,x)结 果 为:y=3e-2xsin(5x)To Matlab(ff2)第5页,本讲稿共30页解解 输入命令:x,y,z=dsolve(Dx=2*x-3*y+3*z,Dy=4*x-5*y+3*z,Dz=4*x-4*y+2*z,t);x=simple(x)%将x化简 y=simple(y)z=simple(z)结 果 为:x=(c1-c2+c3+c2e-3t-c3e-3t)e2t
3、 y=-c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z=(-c1e-4t+c2e-4t+c1-c2+c3)e2t To Matlab(ff3)返 回第6页,本讲稿共30页微分方程的数值解微分方程的数值解(一)常微分方程数值解的定义(一)常微分方程数值解的定义 在生产和科研中所处理的微分方程往往很复杂且大多得不出一般解。而在实际上对初值问题,一般是要求得到解在若干个点上满足规定精确度的近似值,或者得到一个满足精确度要求的便于计算的表达式。因此,研究常微分方程的数值解法是十分必要的因此,研究常微分方程的数值解法是十分必要的。返 回第7页,本讲稿共30页(二)建
4、立数值解法的一些途径(二)建立数值解法的一些途径1、用差商代替导数、用差商代替导数 若步长h较小,则有故有公式:此即欧拉法欧拉法。第8页,本讲稿共30页2、使用数值积分、使用数值积分对方程y=f(x,y),两边由xi到xi+1积分,并利用梯形公式,有:实际应用时,与欧拉公式结合使用:此即改进的欧拉法改进的欧拉法。故有公式:第9页,本讲稿共30页3、使用泰勒公式、使用泰勒公式 以此方法为基础,有龙格龙格-库塔法库塔法、线性多步法线性多步法等方法。4、数值公式的精度、数值公式的精度 当一个数值公式的截断误差可表示为O(hk+1)时(k为正整数,h为步长),称它是一个k阶公式阶公式。k越大,则数值公
5、式的精度越高。欧拉法是一阶公式,改进的欧拉法是二阶公式。龙格-库塔法有二阶公式和四阶公式。线性多步法有四阶阿达姆斯外插公式和内插公式。返 回第10页,本讲稿共30页(三)用(三)用Matlab软件求常微分方程的数值解软件求常微分方程的数值解t,x=solver(f,ts,x0,options)ode45 ode23 ode113ode15sode23s由待解方程写成的m-文件名ts=t0,tf,t0、tf为自变量的初值和终值函数的初值ode23:组合的2/3阶龙格-库塔-芬尔格算法ode45:运用组合的4/5阶龙格-库塔-芬尔格算法自变量值函数值用于设定误差限(缺省时设定相对误差10-3,绝对
6、误差10-6),命令为:options=odeset(reltol,rt,abstol,at),rt,at:分别为设定的相对误差和绝对误差.第11页,本讲稿共30页 1、在解n个未知函数的方程组时,x0和x均为n维向量,m-文件中的待解方程组应以x的分量形式写成.2、使用Matlab软件求数值解时,高阶微分方程必须等价地变换成一阶微分方程组.注意注意:第12页,本讲稿共30页解解:令 y1=x,y2=y11、建立m-文件vdp1000.m如下:function dy=vdp1000(t,y)dy=zeros(2,1);dy(1)=y(2);dy(2)=1000*(1-y(1)2)*y(2)-y
7、(1);2、取t0=0,tf=3000,输入命令:T,Y=ode15s(vdp1000,0 3000,2 0);plot(T,Y(:,1),-)3、结果如图To Matlab(ff4)第13页,本讲稿共30页解解 1、建立m-文件rigid.m如下:function dy=rigid(t,y)dy=zeros(3,1);dy(1)=y(2)*y(3);dy(2)=-y(1)*y(3);dy(3)=-0.51*y(1)*y(2);2、取t0=0,tf=12,输入命令:T,Y=ode45(rigid,0 12,0 1 1);plot(T,Y(:,1),-,T,Y(:,2),*,T,Y(:,3),+
8、)3、结果如图To Matlab(ff5)图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.返 回第14页,本讲稿共30页导弹追踪问题导弹追踪问题 设位于坐标原点的甲舰向位于x轴上点A(1,0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹运行的曲线方程.又乙舰行驶多远时,导弹将它击中?解法一解法一(解析法)第15页,本讲稿共30页由(1),(2)消去t整理得模型:To Matlab(chase1)轨迹图见程序chase1第16页,本讲稿共30页解法二解法二(数值解)1.建立m-文件eq1.m fun
9、ction dy=eq1(x,y)dy=zeros(2,1);dy(1)=y(2);dy(2)=1/5*sqrt(1+y(1)2)/(1-x);2.取x0=0,xf=0.9999,建立主程序ff6.m如下:x0=0,xf=0.9999 x,y=ode15s(eq1,x0 xf,0 0);plot(x,y(:,1),b.)hold on y=0:0.01:2;plot(1,y,b*)结论结论:导弹大致在(导弹大致在(1,0.2)处击中乙舰)处击中乙舰To Matlab(ff6)令y1=y,y2=y1,将方程(3)化为一阶微分方程组。第17页,本讲稿共30页解法三解法三(建立参数方程求数值解)设时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第4讲 微分方程优秀课件 微分方程 优秀 课件
限制150内