《向量法解立体几何》PPT课件.ppt
《《向量法解立体几何》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《向量法解立体几何》PPT课件.ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、空间向量法解决立体几何问题数学专题二专题提纲专题提纲二、立体几何问题的类型及解法二、立体几何问题的类型及解法1、判断直线、平面间的位置关系;(1)直线与直线的位置关系;(2)直线与平面的位置关系;(3)平面与平面的位置关系;2、求解空间中的角度;3、求解空间中的距离。1、直线的方向向量;2、平面的法向量。一、引入两个重要空间向量一、引入两个重要空间向量一一.引入两个重要的空间向量引入两个重要的空间向量1.直线的方向向量 把直线上任意两点的向量或与它平行的向量都称为直线的方向向量直线的方向向量.如图1,在空间直角坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直线AB的方向向量是
2、zxyAB2.平面的法向量v如果表示向量n的有向线段所在的直线垂直于平面,称这个向量垂直于平面,记作n,这时向量n叫做平面平面的法向量的法向量.nv在空间直角坐标系中,如何求平面法向量的坐标呢?如图2,设a=(x1,y1,z1)、b=(x2,y2,z2)是平面内的两个不共线的非零向量,由直线与平面垂直的判定定理知,若na且nb,则n.换句话说,若na=0且nb=0,则n.abn求平面的法向量的坐标的步骤v第一步第一步(设设):设出平面法向量的坐标为n=(x,y,z).v第二步(列):根据na=0且nb=0可列出方程组v第三步(解):把z看作常数,用z表示x、y.v第四步(取):取z为任意一个正
3、数(当然取得越特 殊越好),便得到平面法向量n的坐标.v例例1在棱长为2的正方体ABCD-A1B1C1D1中,O是面AC的中心,求面OA1D1的法向量.A AABCDOA1B1C1D1zxy解:以A为原点建立空间直角坐标系O-xyz(如图),设平面OA1D1的法向量的法向量为n=(x,y,z),则O(1,1,0),A1(0,0,2),D1(0,2,2)由 =(-1,-1,2),=(-1,1,2)得 ,解得 取z=1得平面OA1D1的法向量的坐标n=(2,0,1).二二.立体几何问题的类型及解法立体几何问题的类型及解法v1.判定直线、平面间的位置关系v(1)直线与直线的位置关系v 不重合的两条直
4、线a,b的方向向量分别为a,b.若ab,即a=b,则ab.若ab,即ab=0,则abababv例例2已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,C1CB=C1CD=BCD=,求证:C C1BDA1B1C1D1CBADv证明:设 a,b,c,v依题意有|a|=|b|,v于是 a bv =c(a b)=ca cbv =|c|a|cos|c|b|cos=0v C C1BD v(2)直线与平面的位置关系v 直线L的方向向量为a,平面的法向量为n,且L .v若an,即a=n,则 L v若an,即an=0,则a .nanaLLv例例3棱长都等于2的正三棱柱ABC-A1B1C1,vD,E分
5、别是AC,CC1的中点,求证:v(I)A1E 平面DBC1;v(II)AB1 平面DBC1A1C1B1ACBEDzxyv解:以D为原点,DA为x轴,DB为y轴建立空间直角坐标系D-xyz.则vA(-1,0,0),B(0,0),E(1,0,1),A1(-1,0,2),B1(0,2),C1(1,0,2).v设平面DBC1的法向量为n=(x,y,z),则v 解之得 ,v取z=1得n=(-2,0,1)v(I)=-n,从而A1E 平面DBC1v(II),而 n=-2+0+2=0vAB1 平面DBC1v(3)平面与平面的位置关系v平面的法向量为n1,平面的法向量为n2v n1v n1 n2v n2v若n1
6、n2,即n1=n2,则v若n1n2,即n1 n2=0,则v例例4正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点,求证:面AED面A1FDzxyABCDFEA1B1C1D1v 证明:以A为原点建立如图所示的的直角坐标系A-xyz,设正方体的棱长为2,则E(2,0,1),A1(0,0,2),F(1,2,0),D(0,2,0),v于是v设平面AED的法向量为n1=(x,y,z)得v 解之得 v取z=2得n1=(-1,0,2)v同理可得平面A1FD的法向量为n2=(2,0,1)vn1 n2=-2+0+2=0v面AED面A1FD2.求空间中的角v(1)两异面直线的夹角v利用向量法求两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量法解立体几何 向量 立体几何 PPT 课件
限制150内