《高中导数题的解题技巧(共15页).doc》由会员分享,可在线阅读,更多相关《高中导数题的解题技巧(共15页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上导数题的解题技巧【命题趋向】导数命题趋势:导数应用:导数函数单调性函数极值函数最值导数的实际应用【考点透视】1了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念2熟记基本导数公式;掌握两个函数和、差、积、商的求导法则了解复合函数的求导法则,会求某些简单函数的导数3理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,
2、掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1(2006年辽宁卷)与方程的曲线关于直线对称的曲线的方程为A. B. C. D. 考查目的本题考查了方程和函数的关系以及反函数的求解.同时还考查了转化能力解答过程,即:,所以.故选A.例2. ( 2006年湖南卷)设函数,集合M=,P=,若MP,则实数a的取值范围是 ( ) A.(-,1) B.(0,1) C.(1,+) D. 1,+)考查目的本题主要考查函数的导数和集合等基础知识的应用能力.解答过程由综上可得MP时, 考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x
3、)在P点的导数就是曲线在该点的切线的斜率.(2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线.典型例题例3.(2004年重庆卷)已知曲线y=x3+,则过点P(2,4)的切线方程是_.思路启迪:求导来求得切线斜率.解答过程:y=x2,当x=2时,y=4.切线的斜率为4.切线的方程为y4=4(x2),即y=4x4.答案:4xy4=0.例4.(2006年安徽卷)若曲线的一条切线与直线垂直,则的方程为( )A B C D考查目的本题主要考查函数的导数和直线方程等基础知识的应用能力.解答过程与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为
4、.故选A.例5 ( 2006年重庆卷)过坐标原点且与x2+y2 -4x+2y+=0相切的直线的方程为 ( )A.y=-3x或y=x B. y=-3x或y=-x C.y=-3x或y=-x D. y=3x或y=x 考查目的本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.解答过程解法1:设切线的方程为又故选A.解法2:由解法1知切点坐标为由故选A.例6.已知两抛物线, 取何值时,有且只有一条公切线,求出此时公切线的方程.思路启迪:先对求导数.解答过程:函数的导数为,曲线在点P()处的切线方程为,即 曲线在点Q的切线方程是即 若直线是过点P点和Q点的公切线,则式和式都是的方程,故得,消
5、去得方程, 若=,即时,解得,此时点P、Q重合.当时,和有且只有一条公切线,由式得公切线方程为 .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1. 求函数的解析式; 2. 求函数的值域; 3.解决单调性问题; 4.求函数的极值(最值);5.构造函数证明不等式.典型例题例7(2006年天津卷)函数的定义域为开区
6、间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A1个 B2个 C3个D 4个考查目的本题主要考查函数的导数和函数图象性质等基础知识的应用能力.解答过程由图象可见,在区间内的图象上有一个极小值点.故选A.例8. 设为三次函数,且图象关于原点对称,当时,的极小值为,求出函数的解析式.思路启迪:先设,再利用图象关于原点对称确定系数.解答过程:设,因为其图象关于原点对称,即,得由,依题意,解之,得.故所求函数的解析式为. 例9.函数的值域是_.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。此例的形式结构较为复
7、杂,采用导数法求解较为容易。解答过程:由得,即函数的定义域为.,又,当时,函数在上是增函数,而,的值域是.例10(2006年天津卷)已知函数,其中为参数,且(1)当时,判断函数是否有极值;(2)要使函数的极小值大于零,求参数的取值范围;(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围考查目的本小题主要考查运用导数研究三角函数和函数的单调性及极值、解不等式等基础知识,考查综合分析和解决问题的能力,以及分类讨论的数学思想方法.解答过程()当时,则在内是增函数,故无极值.(),令,得.由(),只需分下面两种情况讨论. 当时,随x的变化的符号及的变化情况如下表:x
8、0+0-0+极大值极小值因此,函数在处取得极小值,且.要使,必有,可得.由于,故.当时,随x的变化,的符号及的变化情况如下表:+0-0+极大值极小值因此,函数处取得极小值,且若,则.矛盾.所以当时,的极小值不会大于零.综上,要使函数在内的极小值大于零,参数的取值范围为.(III)解:由(II)知,函数在区间与内都是增函数。由题设,函数内是增函数,则a须满足不等式组 或 由(II),参数时时,.要使不等式关于参数恒成立,必有,即.综上,解得或.所以的取值范围是.例11(2006年山东卷)设函数f(x)=ax(a+1)ln(x+1),其中a-1,求f(x)的单调区间.考查目的本题考查了函数的导数求
9、法,函数的极值的判定,考查了应用数形结合的数学思想分析问题解决问题的能力解答过程由已知得函数的定义域为,且(1)当时,函数在上单调递减,(2)当时,由解得、随的变化情况如下表0+极小值从上表可知当时,函数在上单调递减.当时,函数在上单调递增.综上所述:当时,函数在上单调递减.当时,函数在上单调递减,函数在上单调递增.例12(2006年北京卷)已知函数在点处取得极大值,其导函数的图象经过点,如图所示.求:()的值;()的值.考查目的本小题考查了函数的导数,函数的极值的判定,闭区间上二次函数的最值, 函数与方程的转化等基础知识的综合应用,考查了应用数形结合的数学思想分析问题解决问题的能力解答过程解
10、法一:()由图像可知,在上,在上,在上,故在上递增,在上递减,因此在处取得极大值,所以()由得解得解法二:()同解法一()设又所以由即得所以例13(2006年湖北卷)设是函数的一个极值点.()求与的关系式(用表示),并求的单调区间;()设,.若存在使得成立,求的取值范围.考查目的本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解答过程()f (x)x2(a2)xba e3x,由f (3)=0,得 32(a2)3ba e330,即得b32a,则 f (x)x2(a2)x32aa e3xx2(a2)x33a e3x(x3)(xa+1)e3x.令f (x)0,得x1
11、3或x2a1,由于x3是极值点,所以x+a+10,那么a4.当a3x1,则在区间(,3)上,f (x)0,f (x)为增函数;在区间(a1,)上,f (x)4时,x23x1,则在区间(,a1)上,f (x)0,f (x)为增函数;在区间(3,)上,f (x)0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间0,4上的值域是min(f (0),f (4) ),f (3),而f (0)(2a3)e30,f (3)a6,那么f (x)在区间0,4上的值域是(2a3)e3,a6.又在区间0,4上是增函数,且它在区间0,4上的值域是a2,(a2)e4,由于(a
12、2)(a6)a2a()20,所以只须仅须(a2)(a6)0,解得0a0时,f(0)为极大值C、b=0 D、当a0时,f(0)为极小值11、已知函数y=2x3+ax2+36x-24在x=2处有极值,则该函数的一个递增区间是( )A、(2,3) B、(3,+)C、(2,+)D、(-,3)12、方程6x5-15x4+10x3+1=0的实数解的集合中( )A、至少有2个元素 B、至少有3个元素 C、至多有1个元素 D、恰好有5个元素二、填空题13.若f(x0)=2, =_.14.设f(x)=x(x+1)(x+2)(x+n),则f(0)=_.15.函数f(x)=loga(3x2+5x2)(a0且a1)的
13、单调区间_.16.在半径为R的圆内,作内接等腰三角形,当底边上高为_时它的面积最大.三、解答题17.已知曲线C:y=x33x2+2x,直线l:y=kx,且l与C切于点(x0,y0)(x00),求直线l的方程及切点坐标.18.求函数f(x)=p2x2(1-x)p(pN+),在0,1内的最大值.19.证明双曲线xy=a2上任意一点的切线与两坐标轴组成的三角形面积等于常数.20.求函数的导数(1)y=(x22x+3)e2x;(2)y=.21.有一个长度为5 m的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s的速度离开墙脚滑动,求当其下端离开墙脚1.4 m时,梯子上端下滑的速度.22.求和Sn=1
14、2+22x+32x2+n2xn1,(x0,nN*).23.设f(x)=ax3+x恰有三个单调区间,试确定a的取值范围,并求其单调区间.24.设x=1与x=2是函数f(x)=alnx+bx2+x的两个极值点.(1)试确定常数a和b的值;(2)试判断x=1,x=2是函数f(x)的极大值还是极小值,并说明理由.25.已知a、b为实数,且bae,其中e为自然对数的底,求证:abba.26.设关于x的方程2x2ax2=0的两根为、(),函数f(x)=.(1)求f()f()的值;(2)证明f(x)是,上的增函数;(3)当a为何值时,f(x)在区间,上的最大值与最小值之差最小?【参考答案】一、1.解析:y=
15、esinxcosxcos(sinx)cosxsin(sinx),y(0)=e0(10)=1.答案:B2.解析:设切点为(x0,y0),则切线的斜率为k=,另一方面,y=()=,故y(x0)=k,即或x02+18x0+45=0得x0(1)=3,y0(2)=15,对应有y0(1)=3,y0(2)=,因此得两个切点A(3,3)或B(15,),从而得y(A)= =1及y(B)= ,由于切线过原点,故得切线:lA:y=x或lB:y=.答案:A3.解析:由=1,故存在含有0的区间(a,b)使当x(a,b),x0时0,于是当x(a,0)时f(0)0,当x(0,b)时,f(0)0,这样f(x)在(a,0)上单
16、增,在(0,b)上单减.答案:B4.解析:fn(x)=2xn2(1x)nn3x2(1x)n-1=n2x(1x)n-12(1x)nx,令fn(x)=0,得x1=0,x2=1,x3=,易知fn(x)在x=时取得最大值,最大值fn()=n2()2(1)n=4()n+1.答案:D5、B 6、A 7、B 8、D 9、B 10、C 11、B 12、C二、13.解析:根据导数的定义:f(x0)=(这时)答案:114.解析:设g(x)=(x+1)(x+2)(x+n),则f(x)=xg(x),于是f(x)=g(x)+xg(x),f(0)=g(0)+0g(0)=g(0)=12n=n!答案:n!15.解析:函数的定
17、义域是x或x2,f(x)=.(3x2+5x2)=,若a1,则当x时,logae0,6x+50,(3x1)(x+2)0,f(x)0,函数f(x)在(,+)上是增函数,x2时,f(x)0.函数f(x)在(,2)上是减函数.若0a1,则当x时,f(x)0,f(x)在(,+)上是减函数,当x2时,f(x)0,f(x)在(,2)上是增函数.答案:(,2)16.解析:设圆内接等腰三角形的底边长为2x,高为h,那么h=AO+BO=R+,解得x2=h(2Rh),于是内接三角形的面积为S=xh=从而.令S=0,解得h=R,由于不考虑不存在的情况,所在区间(0,2R)上列表如下:h(0, R)R(,2R)S+0S
18、增函数最大值减函数由此表可知,当x=R时,等腰三角形面积最大.答案:R三、17. 解:由l过原点,知k=(x00),点(x0,y0)在曲线C上,y0=x033x02+2x0,=x023x0+2,y=3x26x+2,k=3x026x0+2又k=,3x026x0+2=x023x0+2,2x023x0=0,x0=0或x0=.由x0,知x0=,y0=()33()2+2=.k=.l方程y=x 切点(,).18. ,令f(x)=0得,x=0,x=1,x= ,在0,1上,f(0)=0,f(1)=0, . .19.设双曲线上任一点P(x0,y0), , 切线方程 ,令y=0,则x=2x0 令x=0,则 . .
19、20.解:(1)注意到y0,两端取对数,得lny=ln(x22x+3)+lne2x=ln(x22x+3)+2x, (2)两端取对数,得ln|y|=(ln|x|ln|1x|),两边解x求导,得21.解:设经时间t秒梯子上端下滑s米,则s=5,当下端移开1.4 m时,t0=,又s= (259t2)(92t)=9t,所以s(t0)=9=0.875(m/s).22.解:(1)当x=1时,Sn=12+22+32+n2=n(n+1)(2n+1),当x1时,1+2x+3x2+nxn-1=,两边同乘以x,得x+2x2+3x2+nxn=两边对x求导,得Sn=12+22x2+32x2+n2xn-1=.23.解:f
20、(x)=3ax2+1.若a0,f(x)0对x(,+)恒成立,此时f(x)只有一个单调区间,矛盾.若a=0,f(x)=10,x(,+),f(x)也只有一个单调区间,矛盾.若a0,f(x)=3a(x+)(x),此时f(x)恰有三个单调区间.a0且单调减区间为(,)和(,+),单调增区间为(, ).24.解:f(x)=+2bx+1,(1) 由极值点的必要条件可知:f(1)=f(2)=0,即a+2b+1=0,且+4b+1=0,解方程组可得a=,b=,f(x)=lnxx2+x,(2)f(x)=x-1x+1,当x(0,1)时,f(x)0,当x(1,2)时,f(x)0,当x(2,+)时,f(x)0,故在x=
21、1处函数f(x)取得极小值,在x=2处函数取得极大值ln2.25.证法一:bae,要证abba,只要证blnaalnb,设f(b)=blnaalnb(be),则f(b)=lna.bae,lna1,且1,f(b)0.函数f(b)=blnaalnb在(e,+)上是增函数,f(b)f(a)=alnaalna=0,即blnaalnb0,blnaalnb,abba.证法二:要证abba,只要证blnaalnb(eab,即证,设f(x)=(xe),则f(x)=0,函数f(x)在(e,+)上是减函数,又eab,f(a)f(b),即,abba.26.解:(1)f()=,f()= ,f()=f()=4,(2)设(x)=2x2ax2,则当x时,(x)0,.函数f(x)在(,)上是增函数.(3)函数f(x)在,上最大值f()0,最小值f()0,|f()f()|=4,当且仅当f()=f()=2时,f()f()=|f()|+|f()|取最小值4,此时a=0,f()=2. (按ctrl 点击打开)专心-专注-专业
限制150内