高中数学不等式选修题型全归纳(共18页).docx
《高中数学不等式选修题型全归纳(共18页).docx》由会员分享,可在线阅读,更多相关《高中数学不等式选修题型全归纳(共18页).docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上6.不等式选讲6.1均值不等式在证明中的应用1. (1)已知,求证:;(2)已知实数 满足:,试利用(1)求的最小值。(1)证:(当且仅当时,取等号);(2)解:,当且仅当时,的最小值是。考点:均值不等式在证明中的应用、综合法证明不等式6.2绝对值不等式6.2.1单绝对值不等式2. 已知函数若函数恰有个零点,则实数的取值范围为_.答案:解析:分别作出函数与的图像,由图知,时,函数与无交点,时,函数与有三个交点,故当,时,函数与有一个交点,当,时,函数与有两个交点,当时,若与相切,则由得:或(舍),因此当,时,函数与有两个交点,当,时,函数与有三个交点,当,时,函数与有
2、四个交点,所以当且仅当时,函数与恰有个交点.考点:单绝对值不等式3. 存在 ,使得不等式 成立,则实数 的取值范围为_答案:解析:不等式 ,即 ,令 的图象是关于 对称的一个 字形图形,其象位于第一、二象限; ,是一个开口向下,关于 轴对称,最大值为 的抛物线;要存在 ,使不等式 成立,则 的图象应该在第二象限和 的图象有交点,两种临界情况,当 时,的右半部分和 在第二象限相切: 的右半部分即 ,联列方程 ,只有一个解;即 ,即 ,得: ;此时 恒大于等于 ,所以取不到;所以 ;当 时,要使 和 在第二象限有交点,即 的左半部分和 的交点的位于第二象限;无需联列方程,只要 与 轴的交点小于 即
3、可; 与 轴的交点为 ,所以 ,又因为 ,所以 ;综上,实数 的取值范围是: ;故答案为:考点:单绝对值不等式6.2.2同系数绝对值相加型不等式4. 已知函数,.(1)当时,求不等式的解集;(2)设,且当时,求的取值范围。(1)当时,令,作出函数图像可知,当时,故原不等式的解集为;(2)依题意,原不等式化为,故对都成立,故,故,故的取值范围是.考点:同系数绝对值相加型不等式6.2.3同系数绝对值相减型不等式5. 已知函数(1)证明:(2)求不等式的解集。(1) 当时,所以,(2)由(1)可知当 时,的解集为空集;当时,的解集为当 时,的解集为综上:不等式的解集:考点:同系数绝对值相减型不等式6
4、.2.4不同系数绝对值相加减型不等式6. 设函数(1)求不等式的解集;(2)若恒成立,求实数的取值范围(1)由题意得当 时,不等式化为,解得,当时,不等式化为,解得,当时,不等式化为,解得,综上,不等式的解集为(2)由(1)得 ,若, 恒成立,则只需 ,解得 ,综上,的取值范围为考点:不同系数绝对值相加减型不等式6.3已知绝对值不等式解求参数7. 设函数(1)当时,求不等式的解集;(2)如果不等式的解集为,求的值。(1)当时,可化为。 由此可得 或。 故不等式的解集为或。(2) 由 得 此不等式化为不等式组 或即 或 因为,所以不等式组的解集为 由题设可得,故考点:已知绝对值不等式解求参数6.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 不等式 选修 题型 归纳 18
限制150内