高三数学二轮复习-第1部分-专题5-突破点15-圆锥曲线中的综合问题(酌情自选)-理(共9页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高三数学二轮复习-第1部分-专题5-突破点15-圆锥曲线中的综合问题(酌情自选)-理(共9页).doc》由会员分享,可在线阅读,更多相关《高三数学二轮复习-第1部分-专题5-突破点15-圆锥曲线中的综合问题(酌情自选)-理(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上突破点15圆锥曲线中的综合问题(酌情自选)提炼1解答圆锥曲线的定值、定点问题,从三个方面把握(1)从特殊开始,求出定值,再证明该值与变量无关(2)直接推理、计算,在整个过程中消去变量,得定值(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.提炼2用代数法求最值与范围问题时从下面几个方面入手(1)若直线和圆锥曲线有两个不同的交点,则可以利用判别式求范围(2)若已知曲线上任意一点、一定点或与定点构成的图形,则利用圆锥曲线的性质(性质中的范围)求解(3)利用隐含或已知的不等关系式直接求范围(4)利用基本不等式求最值与范围(5
2、)利用函数值域的方法求最值与范围.提炼3与圆锥曲线有关的探索性问题(1)给出问题的一些特殊关系,要求探索出一些规律,并能论证所得规律的正确性通常要对已知关系进行观察、比较、分析,然后概括出一般规律(2)对于只给出条件,探求“是否存在”类型问题,一般要先对结论作出肯定存在的假设,然后由假设出发,结合已知条件进行推理,若推出相符的结论,则存在性得到论证;若推出矛盾,则假设不存在回访1圆锥曲线的定值、定点问题1(2015全国卷)已知椭圆C:1(ab0)的离心率为,点(2,)在C上(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率
3、与直线l的斜率的乘积为定值解(1)由题意有,1,2分解得a28,b24.3分所以C的方程为1.4分(2)证明:设直线l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM)将ykxb代入1,得(2k21)x24kbx2b280.6分故xM,yMkxMb.8分于是直线OM的斜率kOM,即kOMk.11分所以直线OM的斜率与直线l的斜率的乘积为定值.12分回访2圆锥曲线中的最值与范围问题2(2014北京高考)已知椭圆C:x22y24.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y2上,点B在椭圆C上,且OAOB,求线段AB长度的最小值解(1)由题意,椭圆C的标准方
4、程为1,2分所以a24,b22,从而c2a2b22.因此a2,c.故椭圆C的离心率e.5分(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x00.因为OAOB,所以0,即tx02y00,解得t.7分又x2y4,所以|AB|2(x0t)2(y02)22(y02)2xy4x44(0x4).12分因为4(0b0)的离心率是,点P(0,1)在短轴CD上,且1.(1)求椭圆E的方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由解(1)由已知,点C,D的坐标分别为(0,b),(0,b)又点P的坐标为(0,1),且1,于是
5、解得a2,b.所以椭圆E的方程为1.4分(2)当直线AB的斜率存在时,设直线AB的方程为ykx1,A,B的坐标分别为(x1,y1),(x2,y2)联立得(2k21)x24kx20.其判别式(4k)28(2k21)0,所以x1x2,x1x2.6分从而,x1x2y1y2x1x2(y11)(y21)(1)(1k2)x1x2k(x1x2)12.9分所以,当1时,23.此时,3为定值.10分当直线AB斜率不存在时,直线AB即为直线CD.此时,213.12分故存在常数1,使得为定值3.13分热点题型1圆锥曲线中的定值问题题型分析:圆锥曲线中的定值问题是近几年高考的热点内容,解决这类问题的关键是引入变化的参
6、数表示直线方程、数量积、比例关系等,根据等式恒成立,数式变换等寻找不受参数影响的量.(2016重庆二模)已知椭圆C:1(ab0)上一点P与椭圆右焦点的连线垂直于x轴,直线l:ykxm与椭圆C相交于A,B两点(均不在坐标轴上)(1)求椭圆C的标准方程;(2)设O为坐标原点,若AOB的面积为,试判断直线OA与OB的斜率之积是否为定值? 【导学号:】解(1)由题意知解得3分椭圆C的标准方程为1.4分(2)设点A(x1,y1),B(x2,y2),由得(4k23)x28kmx4m2120,5分由(8km)216(4k23)(m23)0,得m24k23.6分x1x2,x1x2,SOAB|m|x1x2|m|
7、,8分化简得4k232m20,满足0,从而有4k2m2m23(*),9分kOAkOB,由(*)式,得1,kOAkOB,即直线OA与OB的斜率之积为定值.12分求解定值问题的两大途径1.2先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值变式训练1(2016北京高考)已知椭圆C:1过A(2,0),B(0,1)两点(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值解(1)由题意得a2,b1,椭圆C的方程为y21.3分又c,离心率e.5分(2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 二轮 复习 部分 专题 突破点 15 圆锥曲线 中的 综合 问题 酌情 自选
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-5323798.html
限制150内