高中数学必修4平面向量测试试卷典型例题(共20页).doc
《高中数学必修4平面向量测试试卷典型例题(共20页).doc》由会员分享,可在线阅读,更多相关《高中数学必修4平面向量测试试卷典型例题(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学平面向量组卷 一选择题(共18小题)1已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度|=|sin,若=(2,0),=(1,),则|(+)|=()A4BC6D22已知,为单位向量,其夹角为60,则(2)=()A1B0C1D23已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A2BC0D4向量,且,则=()ABCD5如图,在ABC中,BD=2DC若,则=()ABCD6若向量=(2cos,1),=(,tan),且,则sin=()ABCD7已知点A(3,0),B(0,3),C(cos,sin),O(0,0),若,则的夹角为()ABC
2、D8设向量=,=不共线,且|+|=1,|=3,则OAB的形状是()A等边三角形B直角三角形C锐角三角形D钝角三角形9已知点G是ABC的重心,若A=,=3,则|的最小值为()ABCD210如图,各棱长都为2的四面体ABCD中,=,=2,则向量=()ABCD11已知函数f(x)=sin(2x+)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则()的值为()ABC1D212已知P为三角形ABC内部任一点(不包括边界),且满足()(+2)=0,则ABC的形状一定为()A等边三角形B直角三角形C钝三角形D等腰三角形13如图所示,设P为ABC所在平面内的一点,并且=
3、+,则ABP与ABC的面积之比等于()ABCD14在ABC中,|AB|=3,|AC|=2,=,则直线AD通过ABC的()A垂心B外心C重心D内心15在ABC中,BAC=60,AB=2,AC=1,E,F为边BC的三等分点,则=()ABCD16已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,则OAB的面积为()ABCD17已知点P为ABC内一点,且+3=,则APB,APC,BPC的面积之比等于()A9:4:1B1:4:9C3:2:1D1:2:318在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()A2B4C5D10二解答题(共6小题)19如图示,在AB
4、C中,若A,B两点坐标分别为(2,0),(3,4)点C在AB上,且OC平分BOA(1)求AOB的余弦值; (2)求点C的坐标20已知向量=(cos,sin)和(1)若,求角的集合;(2)若,且|=,求的值21如图所示,若D是ABC内的一点,且AB2AC2=DB2DC2求证:ADBC22已知向量,其中A、B是ABC的内角,(1)求tanAtanB的值;(2)若a、b、c分别是角A、B、C的对边,当C最大时,求的值23已知向量且,函数f(x)=2(I)求函数f(x)的最小正周期及单调递增区间;(II)若,分别求tanx及的值24已知,函数f(x)=(1)求函数f(x)的最小正周期;(2)求函数f(
5、x)的单调减区间;(3)当时,求函数f(x)的值域 高中数学平面向量组卷(2014年09月24日)参考答案与试题解析一选择题(共18小题)1已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度|=|sin,若=(2,0),=(1,),则|(+)|=()A4BC6D2考点:平面向量数量积的运算菁优网版权所有专题:平面向量及应用分析:利用数量积运算和向量的夹角公式可得=再利用平方关系可得,利用新定义即可得出解答:解:由题意,则,=6,=2,=2=即,得,由定义知,故选:D点评:本题考查了数量积运算、向量的夹角公式、三角函数的平方关系、新定义,考查了计算能力,属于基础题2已知,为单位向量
6、,其夹角为60,则(2)=()A1B0C1D2考点:平面向量数量积的运算菁优网版权所有专题:平面向量及应用分析:由条件利用两个向量的数量积的定义,求得、的值,可得(2)的值解答:解:由题意可得,=11cos60=,=1,(2)=2=0,故选:B点评:本题主要考查两个向量的数量积的定义,属于基础题3已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A2BC0D考点:数量积表示两个向量的夹角菁优网版权所有专题:平面向量及应用分析:由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值解答:解:由题意可得cos=,解得 m=,故选:B点评:本题主要考查两个向量的夹角公式、两个
7、向量的数量积公式的应用,属于基础题4向量,且,则=()ABCD考点:平行向量与共线向量;同角三角函数间的基本关系;诱导公式的作用菁优网版权所有专题:计算题;三角函数的求值分析:根据向量平行的条件建立关于的等式,利用同角三角函数的基本关系与诱导公式,化简即可得到的值解答:解:,且,即,得sin=,由此可得=sin=故选:B点评:本题给出向量含有三角函数的坐标式,在向量互相平行的情况下求的值着重考查了同角三角函数的基本关系、诱导公式和向量平行的条件等知识,属于基础题5如图,在ABC中,BD=2DC若,则=()ABCD考点:向量的加法及其几何意义菁优网版权所有专题:平面向量及应用分析:由题意可得=,
8、而,代入化简可得答案解答:解:由题意可得=故选C点评:本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题6若向量=(2cos,1),=(,tan),且,则sin=()ABCD考点:平面向量共线(平行)的坐标表示菁优网版权所有专题:平面向量及应用分析:直接由向量共线的坐标表示列式计算解答:解:向量=(2cos,1),=(,tan),且,则2costan(1)=0,即2sin=故选:B点评:共线问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别若=(a1,a2),=(b1,b2),则a1a2+b1b2=0,a1b2a2b1=0
9、是基础题7已知点A(3,0),B(0,3),C(cos,sin),O(0,0),若,则的夹角为()ABCD考点:平面向量数量积的坐标表示、模、夹角菁优网版权所有专题:计算题分析:根据题意求出的坐标,再由它的模求出角,进而求出点C的坐标,利用数量积的坐标表示求出和夹角的余弦值,再求出夹角的度数解答:解:A(3,0),C(cos,sin),O(0,0),=(3+cos,sin),(3+cos)2+sin2=13,解得,cos=,则=,即C(,),和夹角的余弦值是=,和的夹角是故选:D点评:本题考查向量线性运算的坐标运算,以及数量积坐标表示的应用,利用向量坐标形式进行运算求出对应向量的模,以及它们的
10、夹角的余弦值,进而结合夹角的范围求出夹角的大小8设向量=,=不共线,且|+|=1,|=3,则OAB的形状是()A等边三角形B直角三角形C锐角三角形D钝角三角形考点:平面向量数量积的运算菁优网版权所有专题:计算题;平面向量及应用分析:对|+|=1,|=3分别平方并作差可得,由其符号可判断AOB为钝角,得到答案解答:解:由|+|=1,得=1,即,由|=3,得,即,得,4=8,解得0,AOB为钝角,OAB为钝角三角形,故选:D点评:本题考查平面向量数量积运算,属基础题9已知点G是ABC的重心,若A=,=3,则|的最小值为()ABCD2考点:平面向量数量积的运算菁优网版权所有专题:不等式的解法及应用;
11、平面向量及应用分析:由A=,=3,可求得=6,由点G是ABC的重心,得=,利用不等式则|2=(+6),代入数值可得解答:解:A=,=3,=3,即=6,点G是ABC的重心,=,|2=(+6)=2,|,当且仅当=时取等号,|的最小值为,故选B点评:本题考查平面向量数量积的运算、不等式求最值,注意不等式求最值时适用的条件10如图,各棱长都为2的四面体ABCD中,=,=2,则向量=()ABCD考点:平面向量数量积的运算菁优网版权所有专题:平面向量及应用分析:由向量的运算可得=(),=,由数量积的定义可得解答:解:=,=2,=(),=,= = = =,=()()= 故选:B点评:本题考查向量数量积的运算
12、,用已知向量表示未知向量是解决问题的关键,属中档题11已知函数f(x)=sin(2x+)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则()的值为()ABC1D2考点:平面向量数量积的运算;正弦函数的图象;正弦函数的定义域和值域菁优网版权所有专题:平面向量及应用分析:根据三角函数的图象和性质,求出函数的周期,利用向量的基本运算和向量的数量积定义即可得到结论解答:解:函数f(x)=sin(2x+)的周期T=,则BC=,则C点是一个对称中心,则根据向量的平行四边形法则可知:=2()=2=点评:本题主要考查向量的数量积运算,利用三角函数的图象和性质是解决本题的
13、关键12已知P为三角形ABC内部任一点(不包括边界),且满足()(+2)=0,则ABC的形状一定为()A等边三角形B直角三角形C钝三角形D等腰三角形考点:平面向量数量积的运算菁优网版权所有专题:平面向量及应用分析:利用向量的三角形法则和平行四边形法则、向量垂直于数量积的关系即可得出解答:解:,=,()(+2)=0,=0而一定经过边AB的中点,垂直平分边AB,即ABC的形状一定为等腰三角形点评:本题考查了向量的三角形法则和平行四边形法则、向量垂直于数量积的关系、等腰三角形的定义,考查了推理能力,属于难题13如图所示,设P为ABC所在平面内的一点,并且=+,则ABP与ABC的面积之比等于()A B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 平面 向量 测试 试卷 典型 例题 20
限制150内