《抽样调查概述》PPT课件.ppt
《《抽样调查概述》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《抽样调查概述》PPT课件.ppt(104页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第五章第五章 抽样调查概述抽样调查概述(重难点章重难点章)第一节 抽样调查概念 第二节 抽样误差 第三节 参数估计 第四节 EXCEL的应用v “对社会经济现象进行抽样调查和推断对社会经济现象进行抽样调查和推断”任务书任务书 (五)五)v一、任务题目:一、任务题目:自选某一社会经济现象,对该现象进行抽样调查,并对调查结果进行分析推断。v二、主要内容:二、主要内容:了解抽样调查的意义及特点;学习掌握抽样误差、参数估计等指标的意义及计算方法;自选某一社会经济现象进行抽样调查,并对调查结果进行分析、推断。v三、基本要求:三、基本要求:v1.所选社会经济现象可是工商企业的生产经营资料或学校的人财物结
2、构分布等。v2.抽样调查收集资料采用实地调查方法;v3.每人用EXCEL制作一张调查数据表;运用统计函数计算出抽样误差、参数估 计值,对该现象的特征及趋势进行分析。v4.将所作的分析存入一个文件夹,拷贝到自己的U盘备查。v四、成绩评定:四、成绩评定:v1评分标准。基础分:数据分析方法和结果正确。8分;v加分:按时提交作业,独立完成。2分。v2.成绩占学期总成绩10%。v v 任务下达日期:2012年 月 日v 任务完成日期:2012年 月 日v 指导教师签字:指导教师签字:任务书学习内容及要求学习内容及要求学习内容:理解抽样调查的含义、作用;熟悉抽样误差的计算方法及其影响因素;掌握在各种抽样组
3、织形式下总体均值和成数的区间 估计的技能方法;掌握确定样本容量的计算方法及其影响因素。带着问题学:1、抽样调查的概念、特点、作用有哪些?2、抽样误差可以避免吗?按样本平均数(成数)计算抽样平均 误差的方法及过程、结果是什么?3、影响抽样误差大小的因素有哪些?4、区间估计的计算方法和过程是什么?5、影响抽样数目的因素有哪些?本章在统计原理中的地位本章在统计原理中的地位 抽样调查和推断是理论教学和实际工作中最常用、最重要的统计方法之一。它利用抽样调查所获得的样本信息,根据概率论所揭示的随机变量的一般规律性,对总体的一些数量特征进行估计。本章内容也是假设检验、相关回归分析的重要基础。第一节第一节 抽
4、样调查概念抽样调查概念 (基础、重点)(基础、重点)重点:重点:抽样调查的基本概念及其作用带着问题学:带着问题学:1、抽样调查的概念及其特点有哪些?2、抽样调查的作用有哪些?第一节第一节 抽样调查概念抽样调查概念 (基础、重点)(基础、重点)一、一、抽样调查的含义抽样调查的含义 抽样调查是按照随机原则从总体总体中抽取一部分单位一部分单位进行调查,并以样本观测结果样本观测结果对未知的总体数量特征总体数量特征作出具有一定可靠程度的估计与推断,从而认识总体的一种统计方法。(全及总体)、(样本总体)、样本指标)、(总体参数)二、抽样调查的特点二、抽样调查的特点:(三点)三、抽样调查的作用三、抽样调查的
5、作用:(四个)要学懂抽样推断,首先要明确总体分布、样本分布与抽样分布三者的关系。总体分布:可以是正态分布、偏态分布等;未知;唯一。样本分布:可以是正态(偏态)分布等;取样后便知;有若干个样本且形态不一。抽样分布:面宽、多样;越接近中心点,分布越密集。735055857483767075总体分布:未知;唯一的总体分布:未知;唯一的7577抽样分布:两端少(概率小),中心多(概率大)抽样分布:两端少(概率小),中心多(概率大)3090 补充:概率与分布的相关知识补充:概率与分布的相关知识 1、总体分布及其特征、总体分布及其特征 总体分布就是总体中所有个体关于某个变量(标志)的取值所形成的分布。变量
6、分布的形态很多,例如J型分布、U型分布和钟型分布等,不同的分布会有不同的特征,认识总体分布特征是统计研究的任务之一。反映总体分布特征的指标叫总体参数,反映总体分布特征的指标叫总体参数,一般用 表示。常用的总体参数有两个:一是总体均值(包括是非变量的均值);二是总体方差或标准差(包括是非变量的方差或标准差)。2、样本分布及其特征样本分布及其特征 样本分布就是样本中所有个体关于某个变量(标志)的取值所形成的分布。由于样本来自于总体,包含了一部分关于总体的信息。当样本容量很大(或是逐渐增大)时,样本分布会接近总体分当样本容量很大(或是逐渐增大)时,样本分布会接近总体分布。布。如果样本容量很小,那么样
7、本分布就有可能与总体分布相差很大,抽样估计的结果就会很差。反映样本分特征的指标叫样本统计量,反映样本分特征的指标叫样本统计量,通常用 来表示。常见的样本统计量也有两个:样本均值和样本方差,即:3 3、抽样分布及其特征、抽样分布及其特征 抽样分布的概念及影响因素抽样分布的概念及影响因素 一般意义上说,抽样分布就是样本统计量的概率分布,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率所组成。它由样本统计量的所有可能取值和与之对应的概率所组成。实际的抽样分布形成取决于以下五个因素因素:总体分布总体分布。总体分布越分散则抽样分布也越分散 样本容量样本容量。样本容量越小则抽
8、样分布越分散 抽样方法抽样方法。一般情况下,重复抽样比不重复抽样的抽样分布分散 抽样组织形式抽样组织形式。简单抽样比分层抽样的抽样分布分散 估计量构造估计量构造。估计量构造不同,抽样分布也不同 抽样分布形式抽样分布形式 在抽样估计中,最基本的抽样分布是样本均值的最基本的抽样分布是样本均值的抽样分布和样本成数的抽样分布,抽样分布和样本成数的抽样分布,以此得到抽样分布的形式。抽样分布特征抽样分布特征 任一抽样分布都有自己的特征,这个特征就是样本统计量的数学期望和方差。其中,样本统计量的数学期望就是所有样本统计值的平均数,样本统计量的方差就是所有样本统计值关于数学期望的方差。当当估计量就是样本统计量
9、时,数学期望与方差分别表示估计量就是样本统计量时,数学期望与方差分别表示 为 和 。(三)抽样分布及其特征(三)抽样分布及其特征1.1.抽样分布的概念及影响因素抽样分布的概念及影响因素 一般意义上说,抽样分布就是样本统计量的概率分布,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率所组成。它由样本统计量的所有可能取值和与之对应的概率所组成。如果说样本分布是关于样本观测值的分布,那么抽样分布则是关于样本统计值的分布,而样本统计值是由样本观测值计算而来的。实际的抽样分布形成取决于以下五个因素因素:总体分布总体分布。总体分布越分散则抽样分布也越分散 样本容量样本容量。样
10、本容量越小则抽样分布越分散 抽样方法抽样方法。一般情况下,重复抽样比不重复抽样的抽样分布分散 抽样组织形式抽样组织形式。简单抽样比分层抽样的抽样分布分散 估计量构造估计量构造。估计量构造不同,抽样分布也不同补充:补充:举简例说明抽样分布及概率举简例说明抽样分布及概率v 有4名工人(N=4),日产量分别为22、24、26、28件(用A、B、C、D代表),总体均值为25件,方差为5件,标准差为件。现从中随机抽出2件检验(n=2),采用重复抽样方法,共产生16个可能样本:即“AA、AB、AC、AD、BA、BB、DA、AB、DC、DD”等共16组。所有可能样本平均数的均值=总体平均数 即:E(x)=X
11、 样本均值的抽样分布如下表所示:例:例:4名工人日产量抽样分布(考虑顺序)名工人日产量抽样分布(考虑顺序)(重复抽样,4抽2)排列排列AAABBAACCABBADDABCCBCCBDDBCDDCDD日产量日产量22、2222、2422、2624、2422、2624、2626、2624、2826、2828、28平均数平均数22232424252526262728概率概率例:例:4名工人日产量抽样分布(考虑顺序)名工人日产量抽样分布(考虑顺序)(不重复抽样,4抽2)排列排列AAABBAACCABBADDABCCBCCBDDBCDDCDD日产量日产量22、2222、2422、2624、2422、26
12、24、2626、2624、2826、2828、28平均数平均数22232424252526262728概率概率!样本均值的抽样分布定理样本均值的抽样分布定理 中心极限定理中心极限定理 对于任一具有平均数 和方差 的有限总体,当样本当样本 容量容量n足够大时足够大时(例如 或 ),样本均值样本均值 的分的分布也趋于服从正态分布布也趋于服从正态分布,此即为中心极限定理。分布定理分布定理 当正态总体的方差未知且n较小,或任一方差为 的总体但n较小,则样本均值的分布服从自由度为n-1的 t 分布。分布曲线与正态分布相近,其中数学期望相同。补充:常用的抽样分布定理补充:常用的抽样分布定理总体分布(未知)
13、样本分布1(n小,误差大)样本分布3(n渐大,误差渐小)样本分布2(n渐大,误差渐小)四、抽样调查中的几个基本概念四、抽样调查中的几个基本概念(一)总体总体(全及总体全及总体)与样本与样本(抽样总体抽样总体)研究对象全体;抽取的样本构成的总体。(样本可有多个,样本容量可大可小,n50为大样本,n30为小样本)(二)总体参数和样本统计量总体参数和样本统计量(样本指标样本指标)常用:总体平均数、成数、方差等,(客观存在、唯一但未知,需推算);样本平均数、成数、方差等,(是据样本数据计算出的实际数,用以 推断总体指标)。总体参数总体参数样本统计量及其计算公式样本统计量及其计算公式总体均值样本均值总体
14、成 数 P样本成数总体方 差样本方差(若分母为n-1则称之为样本修正方差)总体标准差样本标准差(若分母为n-1则称之为样本修正方差)(四)抽样方法和样本数目(四)抽样方法和样本数目 1.重复抽样,也叫重置抽样重复抽样,也叫重置抽样,是指从总体的个单位中抽取一个容量为n的样本,每次抽出一个单位后,再将其放回总体中参加下一次抽取,这样连续抽n次即得到一个样本。同一总体单位有可能被重复抽中;每次都是从个总体单位中抽取.(每个单位被抽中的概率没变)2.不重复抽样,也叫不重置抽样不重复抽样,也叫不重置抽样,是指抽中单位不再放回总体中,下一个样本单位只能从余下的总体单位中抽取。同一总体单位不会被重复抽中;
15、每次抽取是在不同数目的总体单位中进行的。(每个单位被抽中的概率改变)样本及样本指标x1x2x3xn重复抽样:重复抽样:每次每个单位被抽中的概率相同,1/20、1/20、。某个单位有可能被多次抽中不重复抽样:不重复抽样:每次每个单位被抽中的概率不同,1/20、1/19、1/18、。每个单位只可能被抽中一次。样本及样本指标x1x2x3xn抽样组织形式抽样组织形式基本的抽样组织方式有五种:基本的抽样组织方式有五种:纯随机抽样纯随机抽样(简单随机抽样)等距抽样等距抽样 (机械抽样)类型抽样类型抽样 (分层抽样)整群抽样整群抽样 (集团抽样)阶段抽样阶段抽样第二第二节节 抽样误差抽样误差 (重难点节)(
16、重难点节)重点:重点:按抽样平均数和抽样成数计算抽样误差 的方法带着问题学:带着问题学:1、抽样误差可以避免吗?可以事先计算和调控吗?2、按样本平均数计算抽样平均误差的方法及过程、结果是什么?3、按样本成数计算抽样平均误差的方法及过程、结果是什么?4、用(不)重复抽样方法计算抽样误差的区别 是什么?5、影响抽样误差大小的因素有哪些?第二第二节节 抽样误差抽样误差 返回 一、抽取样本单位的方式和抽样误差一、抽取样本单位的方式和抽样误差 非抽样误差非抽样误差(系统偏差系统偏差)。如:抽样框不准确;有些观测单位数据无法取得;已取得的数据不真实等原因所致。抽样误差(代表性误差)抽样误差(代表性误差)由
17、于抽样的非全面性和随机性引起的偶然性误差。即抽样估计值随样本不同而产生的误差。其特点是:样本容量增大而趋向于零(样本均值与总体均值之差为零)。抽样调查中的抽样误差一般是指随机误差。(如:产品质量抽查中,用抽取的50件电子产品的平均耐用时数和合格率去推断推断生产的全部1000件产品的耐用时数和合格率。)9030 75误差-45误差15(一)(一)抽样误差类型抽样误差类型1、抽样实际误差抽样实际误差样本估计值与总体参数值之间的离差。记为 .(每一次抽样的实际误差是不可知的,因为 总体参数是未知的)。2、抽样平均误差抽样平均误差抽样平均数或抽样成数的标准差。是衡量抽样误差大小的核心指标是衡量抽样误差
18、大小的核心指标。(抽样平均误差越小,抽样分布越集中。反之,则越离散。)(三)抽样极限误差抽样极限误差(亦称允许误差范围)估计量所允许的最大(小)值与总体参数值之间的绝对离差,通常用 表示,即 。抽样极限误差取决于两个因素:1、抽样标准误。抽样标准误越大,抽样极限误差就越大;2、抽样估计概率保证程度。概率保证程度越高,抽样极限误差就越大。优良估计量优良估计量的评价标准的评价标准 估计量估计量用以估计总体参数的量,一般指样本统计量。用以估计总体参数的量,一般指样本统计量。优良估计量的标准:优良估计量的标准:1、无偏性、无偏性以样本估计总体,所有可能的估计值与总体参数值离差的均值为零。样本均值、成数
19、、方差是总体均值、成数、方差的无偏估计量。2、一致性、一致性以样本估计总体,样本容量充分大时,样本指标也充分靠近总体参数。样本均值、成数、方差是总体均值、成数、方差的一致性估计量。3、有效性、有效性以样本估计总体,要求优良估计量的方差比其它估计量的方差小。样本均值、成数、方差是总体均值、成数、方差的有效估计量。4、充分性、充分性以样本估计总体,要求优良估计量的构造应能尽量减少有用信息损失。样本均值、成数、方差是总体均值、成数、方差的充分估计量。(二)(二)抽样平均误差的计算抽样平均误差的计算 样本均值 样本成数重复抽样不重复抽样 不重复抽样计算的 重复抽样计算的 抽 样 误 差 抽 样 误 差
20、 影响抽样标准误大小的因素:影响抽样标准误大小的因素:(1)总体标准差(总体各单位标志值的离散程度)总体标准差(总体各单位标志值的离散程度)。其它条件不变的情况下,总体单位的离散程度大,抽样标准误大。(2)样本容量。)样本容量。其它条件不变的条件下,样本容量大,抽样标准误小。(3)抽样方法。)抽样方法。相同条件下,重复抽样的抽样标准误比不重复抽样的抽样标准误大。(4)抽样组织方式)抽样组织方式。由于不同抽样组织方式有不同的抽样误差,所以,在抽样误差要求相同的情况下,不同抽样组织方式所必需的抽样数目也不同。补充补充:样本容量与抽样误差之间的数量变动关系样本容量与抽样误差之间的数量变动关系 (在其
21、他条件不变的情况下)(在其他条件不变的情况下)1.当样本容量当样本容量n扩大扩大(或缩小)为原来的或缩小)为原来的k倍时,则抽样倍时,则抽样平均误差平均误差 缩小(或扩大)为原来的缩小(或扩大)为原来的K倍倒数的倍倒数的平方根平方根。证明证明1:设:=2,n=4 则:证明证明2:设:=2,n=4 则:2.当抽样平均误差当抽样平均误差 扩大扩大(或缩小)为原来的或缩小)为原来的k倍倍时,则样本容量时,则样本容量n 缩小(或扩大)为原来的缩小(或扩大)为原来的K倍倒数的倍倒数的平方平方。证明证明3:设:=2,n=4 则:证明证明4:设:=2,n=4 则:第三节参数估计第三节参数估计 (重点节)(重
22、点节)重点:重点:总体参数的区间估计带着问题学:带着问题学:1、参数估计的理论基础是什么?2、抽样极限误差如何计算?3、区间估计的计算方法和过程是什么?4、影响抽样数目的因素有哪些?第三节参数估计第三节参数估计 (重点节)(重点节)一、参数估计的理论基础:大数定律和中心极限定理 抽样估计按随机原则从总体中抽取部分单位(样本)调查,用调查结果(样本指标)对总体参数做出具有一定可靠程度的估计与推断,从而认识总体的一种统计方法。例:从1000只灯管中随机抽出50只检验,进行抽样估计和推断。(总体)1000 50(样本)总体平均数总体平均数 样本平样本平均数均数 总体成总体成 数数 样本样本成成 数数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抽样调查概述 抽样调查 概述 PPT 课件
限制150内