《晶体的对称性》PPT课件.ppt
《《晶体的对称性》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《晶体的对称性》PPT课件.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第五五节节 晶晶体体的的对对称称性性本节主要内容本节主要内容:1.5.1 1.5.1 对称性与对称操作对称性与对称操作1.5.2 1.5.2 晶系和布拉维原胞晶系和布拉维原胞1.5.1 对称性与对称操作对称操作所依赖的对称操作所依赖的几何要素。经过某一对称操作,把晶体中任一点经过某一对称操作,把晶体中任一点 变为变为 可以用线性变换来表示。可以用线性变换来表示。1.5 晶体的对称性对称性:对称性:经过某种动作后,晶体能够自身重合的特性。经过某种动作后,晶体能够自身重合的特性。对称操作:对称操作:使晶体自身重合的动作。使晶体自身重合的动作。对称素:对称素:操作前后,两点间的距离保持不变,操作前
2、后,两点间的距离保持不变,Ox1 1x3 3x2 2O点和点和X点间距与点间距与O点和点和 点间距相等点间距相等。I为单位矩阵,即:为单位矩阵,即:或者说或者说A为正交矩阵,其矩阵行列式为正交矩阵,其矩阵行列式 。2.简单对称操作(旋转对称、中心反映、镜象、旋转反演对称)(1)(1)旋转对称旋转对称(Cn,对称素为线对称素为线)若晶体绕某一固定轴转若晶体绕某一固定轴转 以后自身重合,则此轴称为以后自身重合,则此轴称为n次次(度度)旋转对称轴旋转对称轴。下面我们计算与转动对应的变换矩阵。下面我们计算与转动对应的变换矩阵。当当OX绕绕Ox1转动角度转动角度 时,图中时,图中若若OX在在Ox2x3平
3、面上投影的长度为平面上投影的长度为R,则则Ox1x3x2 晶体中允许有几度旋转对称轴呢晶体中允许有几度旋转对称轴呢?设设B1ABA1是晶体中某一晶是晶体中某一晶面上的一个晶列,面上的一个晶列,AB为这一晶为这一晶列上相邻的两个格点列上相邻的两个格点。A1ABB1 若晶体绕通过格点若晶体绕通过格点A并垂直于并垂直于纸面的纸面的u轴顺时针转轴顺时针转 角后能自身重角后能自身重合,则由于晶体的周期性,通过格合,则由于晶体的周期性,通过格点点B也有一转轴也有一转轴u。是是 的整数倍,的整数倍,A1 1ABB1 1 相反若相反若逆时针转逆时针转 角后能自身重合,则角后能自身重合,则A1ABB1 是是 的
4、整数倍,的整数倍,晶体中允许的旋转对称轴只能是晶体中允许的旋转对称轴只能是1,2,3,4,6度轴。度轴。综合上述证明得:综合上述证明得:12346 正五边形沿竖直轴每旋转正五边形沿竖直轴每旋转720恢恢复原状,但它不能重复排列充满一个复原状,但它不能重复排列充满一个平面而不出现空隙。因此晶体的旋转平面而不出现空隙。因此晶体的旋转对称轴中不存在五次轴,只有对称轴中不存在五次轴,只有1,2,3,4,6度度旋转对称轴旋转对称轴。(2)(2)中心反映中心反映(i,对称素为点对称素为点)取中心为原点,经过中心反映后,图形中任一点取中心为原点,经过中心反映后,图形中任一点变为变为(3)镜象镜象(m,对称素
5、为面对称素为面)如以如以x3=0面作为对称面,镜象是将图形的任何一点面作为对称面,镜象是将图形的任何一点变为变为(4)(4)旋转旋转-反演对称反演对称 若晶体绕某一固定轴转若晶体绕某一固定轴转 以后,以后,再经过中心反演,晶体自晶体自身重合,则此轴称为身重合,则此轴称为n次(度)旋转-反演对称轴。旋转-反演对称轴只能有1,2,3,4,6度轴。旋转旋转-反演对称轴用反演对称轴用 表示。表示。旋转旋转-反演对称轴并反演对称轴并不都是独立的基本对称素。如:独立的基本对称素。如:1212345612ABDCEFGH正四面体既无四正四面体既无四度轴也无对称心度轴也无对称心6=3+m12345661234
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 晶体的对称性 晶体 对称性 PPT 课件
限制150内