第七章 谐振子优秀课件.ppt
《第七章 谐振子优秀课件.ppt》由会员分享,可在线阅读,更多相关《第七章 谐振子优秀课件.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七章 谐振子第1页,本讲稿共30页Many complicated potential can be approximated in the vicinity of their equilibrium points by a harmonic oscillator.The Taylor expansion of V(x)at equilibrium point x=a is Hamitonnian function of an oscillator with mass m and oscillating frequency 0 can be writtenStationary Schrodi
2、nger equation第2页,本讲稿共30页Referencing the book edited by曾谨言,we solve the Schrodinger equation.Introduce the no-dimension parameters(无量纲参数)We get(boundary condition),(1)(2)We get an asymptotic solution(试探解)第3页,本讲稿共30页Insert(2)to(1),getThis is Hermite(厄米)differential equationAt the vicinity of =0,u()is
3、expanded the Taylor series.Only will satisfies the boundary condition()(4)Therefore the condition(4)is satisfied,we can get the solution which is allowed in physics field.According to(3)第4页,本讲稿共30页Energy eigenvalue of harmonic oscillator1.Energy level is discrete.2.The energy gap is identical.3.The
4、energy level of ground state(zero point energy)is not zero.第5页,本讲稿共30页The solution of equation(3)is Hermite polynomials(厄米多项式).The eigenfuction and energy of harmonic oscillator are Normalized constant第6页,本讲稿共30页Some most simple Hermite polynomialsH0=1,H1=2,H2=422,H3=83 12,The basic properties of He
5、rmite polynomials(The definition)Two important and useful relations第7页,本讲稿共30页n=0:n=1:n=2:The first three eigenfunctions of harmonic oscillator第8页,本讲稿共30页The symmetry propertyWhen n is even,positive parity(n 为偶数,偶宇称)When n is odd,negative parityIn general第9页,本讲稿共30页Ground state The energy and wave f
6、unction of ground state(n=0)The probability finding a particle at x=0 is maximum,which is contrary to classical particle.For a classical harmonic oscillator,when x=0,its potential is minimum and kinetic energy is maximum,hence the interval which it delays at x=0 is shortest.第10页,本讲稿共30页In classical
7、mechanics,a particle with ground state energy E0 motions in the range According to quantum mechanics,the probability finding a particle outside the classical allowed range isn15xW(x)wclwqu第11页,本讲稿共30页Zero point energy is a direct consequence of the uncertainty relationSince the integrand(被积函数)is an
8、odd function,第12页,本讲稿共30页We can write uncertainty relation againThe mean energyThe minimum energy is zero point energy,which is compatible with uncertainty principle.第13页,本讲稿共30页The normalization eigenfunction of harmonic oscillator According to these relations,we getThe description of the Harmonic
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七章 谐振子优秀课件 第七 谐振子 优秀 课件
限制150内