第七章固体的扩散共讲优秀课件.ppt
《第七章固体的扩散共讲优秀课件.ppt》由会员分享,可在线阅读,更多相关《第七章固体的扩散共讲优秀课件.ppt(96页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七章固体的扩散共讲第1页,本讲稿共96页扩散现象:扩散现象:由于原子、分子等的热运动,物由于原子、分子等的热运动,物 质从系统的一部分迁移至另一部质从系统的一部分迁移至另一部 分的现象,被称为扩散。分的现象,被称为扩散。第2页,本讲稿共96页u 气体分子扩散:气体分子扩散:如气味:汽油味、如气味:汽油味、氨气味氨气味uu 液体分子扩散液体分子扩散:如:清水中滴入几滴红墨水,过一段时如:清水中滴入几滴红墨水,过一段时 间,水就都染上红色;间,水就都染上红色;uu 固体分子扩散呢?固体分子扩散呢?第3页,本讲稿共96页 如把两块不同的金属紧压在一起,经如把两块不同的金属紧压在一起,经过较长时间后
2、,每块金属的接触面内部过较长时间后,每块金属的接触面内部都可发现另一种金属的成份。都可发现另一种金属的成份。第4页,本讲稿共96页7.1固体中质点扩散的特点与唯象理论固体中质点扩散的特点与唯象理论1、质点扩散的特点、质点扩散的特点流体中的扩散:流体中的扩散:uu 流体(气体或液体)中质点间相互作用比较弱,质流体(气体或液体)中质点间相互作用比较弱,质流体(气体或液体)中质点间相互作用比较弱,质流体(气体或液体)中质点间相互作用比较弱,质点间未形成规则的结构,质点迁移是完全随机地在点间未形成规则的结构,质点迁移是完全随机地在点间未形成规则的结构,质点迁移是完全随机地在点间未形成规则的结构,质点迁
3、移是完全随机地在三维空间任意方向上发生。三维空间任意方向上发生。三维空间任意方向上发生。三维空间任意方向上发生。第5页,本讲稿共96页uu所以所以流体中发生的扩散传质的流体中发生的扩散传质的特点:具有很大特点:具有很大特点:具有很大特点:具有很大速率速率和和完全各向同性完全各向同性uu质点每一步迁移的自由行程随机地取决于该方质点每一步迁移的自由行程随机地取决于该方向上最邻近质点的距离。向上最邻近质点的距离。uu质点密度越低(如气体),质点迁移的自由行质点密度越低(如气体),质点迁移的自由行程也就越大。程也就越大。第6页,本讲稿共96页固体中的扩散固体中的扩散u固体质点之间相互作用力强,开始扩散
4、温度固体质点之间相互作用力强,开始扩散温度较高,但低于熔点较高,但低于熔点.所有质点均束缚在三维结构势阱中,质点间相所有质点均束缚在三维结构势阱中,质点间相互作用强,质点每一步迁移必须从热涨落或外互作用强,质点每一步迁移必须从热涨落或外场中获取足够能量以克场中获取足够能量以克服势阱能量。服势阱能量。第7页,本讲稿共96页间隙原子扩散势场示意图间隙原子扩散势场示意图间隙原子扩散势场示意图间隙原子扩散势场示意图u固体中质点扩散各向异性和扩散速率低固体中质点扩散各向异性和扩散速率低 固体中原子或离子的迁移方向和自由行程固体中原子或离子的迁移方向和自由行程受受结构中质点排列方式的限制,依一定方式所堆积
5、结构中质点排列方式的限制,依一定方式所堆积的结构将以一定对称性和周期性限制质点每一步的结构将以一定对称性和周期性限制质点每一步迁移的方向和自由行程迁移的方向和自由行程第8页,本讲稿共96页uu所以固体中质点的扩散比气体、液体慢得多,所以固体中质点的扩散比气体、液体慢得多,甚至需要几年的时间才能看得到扩散现象。甚至需要几年的时间才能看得到扩散现象。uu 但是只要固体中原子、离子分布不均,存在但是只要固体中原子、离子分布不均,存在但是只要固体中原子、离子分布不均,存在但是只要固体中原子、离子分布不均,存在浓度梯度,就会产生使浓度趋于均匀的定向浓度梯度,就会产生使浓度趋于均匀的定向扩散扩散uu 那么
6、,什么是扩散?那么,什么是扩散?那么,什么是扩散?那么,什么是扩散?第9页,本讲稿共96页系统内部的物质在系统内部的物质在梯度(浓度梯度梯度(浓度梯度、化化学位梯度学位梯度、应力梯度)应力梯度)的推动力下,由于的推动力下,由于质点的热运动而导致质点的定向迁移,从质点的热运动而导致质点的定向迁移,从宏观上表现为物质的定向输送,此过程称宏观上表现为物质的定向输送,此过程称为扩散。为扩散。扩散定义:扩散定义:第10页,本讲稿共96页uu扩散的结果即消除这种浓度梯度、化学位梯扩散的结果即消除这种浓度梯度、化学位梯度、应力梯度,达到体系内度、应力梯度,达到体系内度、应力梯度,达到体系内度、应力梯度,达到
7、体系内组分浓度的均匀组分浓度的均匀组分浓度的均匀组分浓度的均匀分布或平衡分布或平衡。uu固相变化的多种过程与扩散有关固相变化的多种过程与扩散有关如如固态化学反应固态化学反应固态相变固态相变烧结工艺烧结工艺那么如何描述扩散过程?那么如何描述扩散过程?那么如何描述扩散过程?那么如何描述扩散过程?第11页,本讲稿共96页u菲克认为:流体和固体中质点的迁移在微观上不同,菲克认为:流体和固体中质点的迁移在微观上不同,但从宏观连续介质的角度看,遵守相同的统计规律:但从宏观连续介质的角度看,遵守相同的统计规律:在连续介质构成的扩散体系中扩散质的浓度在连续介质构成的扩散体系中扩散质的浓度c c一一般是空间般是
8、空间x x和时间和时间t t的函数的函数2 2 菲克定律菲克定律u即:扩散体系中,参与扩散质点的浓度因位置即:扩散体系中,参与扩散质点的浓度因位置 而异,且随时间变化而异,且随时间变化u19581958年,菲克建立了描述物质从高浓度区向低年,菲克建立了描述物质从高浓度区向低 浓度浓度区迁移的扩散方程。区迁移的扩散方程。第12页,本讲稿共96页假设有横截面积为假设有横截面积为A的非均匀固溶体棒材,其中某一组的非均匀固溶体棒材,其中某一组分浓度分布为分浓度分布为C(x,t),在),在t时间内,沿时间内,沿x方向通过方向通过x处截面处截面迁移物质的量迁移物质的量m(或称扩散通量)与该处的浓度梯度成正
9、比:(或称扩散通量)与该处的浓度梯度成正比:菲克第一定律扩散方程模型菲克第一定律扩散方程模型 菲克第一扩散方程菲克第一扩散方程第13页,本讲稿共96页表达式:表达式:JxJ J:扩散通量,单位时间通过单位截面的质点数:扩散通量,单位时间通过单位截面的质点数(质点数质点数/s.cm/s.cm2 2);负号表示粒子从高浓度向低浓度扩散,;负号表示粒子从高浓度向低浓度扩散,D D:扩散系:扩散系数,单位浓度梯度的扩散通量数,单位浓度梯度的扩散通量 (m (m2 2/s /s 或或 cm cm2 2/s),/s),D D取决于取决于质点本身的性质,对于各向同性的多晶材料或玻璃材料,扩质点本身的性质,对
10、于各向同性的多晶材料或玻璃材料,扩散系数为常数量。散系数为常数量。C C:浓度,即质点数:浓度,即质点数/cm/cm3 3,是位置和时间的函数。,是位置和时间的函数。第14页,本讲稿共96页三维表达式:三维表达式:n Fick Fick第一定律:适用于第一定律:适用于稳定扩散稳定扩散问题,即:扩问题,即:扩 散质点散质点浓度分布不随时间变化浓度分布不随时间变化。即。即c/c/x x不随不随时间时间t t变化变化第15页,本讲稿共96页n Fick Fick第一定律:不涉及扩散系统内部原子运动的微第一定律:不涉及扩散系统内部原子运动的微观过程;扩散系数反映了扩散系统的特性,并不仅观过程;扩散系数
11、反映了扩散系统的特性,并不仅仅取决于某一种组元的特性;仅取决于某一种组元的特性;n 稳定扩散:在垂直扩散方向上的任一平面上,稳定扩散:在垂直扩散方向上的任一平面上,单位时间内通过该平面单位面积的粒子数一单位时间内通过该平面单位面积的粒子数一 定,即定,即J J恒定恒定。第16页,本讲稿共96页n对于对于dc/dxdc/dx均在变化,是均在变化,是dxdx和和t t的函数,即:扩的函数,即:扩散系统中每一点的扩散物质浓度将随时间变化散系统中每一点的扩散物质浓度将随时间变化非稳态扩散。绝大多数扩散过程是非稳态扩散。非稳态扩散。绝大多数扩散过程是非稳态扩散。n菲克菲克FickFick第二定律使用范围
12、第二定律使用范围随着扩散时间随着扩散时间的继续而产生的浓度空间分布的继续而产生的浓度空间分布第17页,本讲稿共96页CtCx C/x=常数常数CtJx C/t 0 J/x 0稳定扩散稳定扩散 不稳定扩散不稳定扩散第18页,本讲稿共96页 菲克第二扩散方程菲克第二扩散方程 推导:取一体积元,分析推导:取一体积元,分析xxxxdxdx间质点数在间质点数在单位时间内单位时间内 x x 方向的改变,即考虑两个相距为方向的改变,即考虑两个相距为 dx dx 的平行平面。的平行平面。第19页,本讲稿共96页如果扩散系数如果扩散系数D不随物质浓度而变化不随物质浓度而变化,则:则:第20页,本讲稿共96页三维
13、表达式:三维表达式:n Fick Fick第二定律适用于第二定律适用于不同性质的扩散体系不同性质的扩散体系;n Fick Fick第二定律可用于求解扩散质点浓度分布第二定律可用于求解扩散质点浓度分布 随时间和距离而变化的随时间和距离而变化的不稳定扩散问题不稳定扩散问题。第21页,本讲稿共96页3菲克定律的应用(稳定扩散)菲克定律的应用(稳定扩散)以氢通过金属膜的扩散为例说明以氢通过金属膜的扩散为例说明以氢通过金属膜的扩散为例说明以氢通过金属膜的扩散为例说明FickFick第一定律在一维第一定律在一维第一定律在一维第一定律在一维稳定扩散中的应用。稳定扩散中的应用。稳定扩散中的应用。稳定扩散中的应
14、用。如图所示,金属膜的厚度为如图所示,金属膜的厚度为如图所示,金属膜的厚度为如图所示,金属膜的厚度为 ,取,取,取,取x x轴垂直于膜面。金轴垂直于膜面。金轴垂直于膜面。金轴垂直于膜面。金属膜两边供气与抽气同时进行,一面保持高而恒定的属膜两边供气与抽气同时进行,一面保持高而恒定的属膜两边供气与抽气同时进行,一面保持高而恒定的属膜两边供气与抽气同时进行,一面保持高而恒定的压力压力压力压力p p2 2,另一面保持低而恒定的压力,另一面保持低而恒定的压力,另一面保持低而恒定的压力,另一面保持低而恒定的压力p p1 1。扩散一定时。扩散一定时。扩散一定时。扩散一定时间后,金属膜中建立起稳定的浓度分布。
15、间后,金属膜中建立起稳定的浓度分布。间后,金属膜中建立起稳定的浓度分布。间后,金属膜中建立起稳定的浓度分布。第22页,本讲稿共96页氢的扩散包括氢气吸附于金属膜表面,氢分子分解为原子、氢的扩散包括氢气吸附于金属膜表面,氢分子分解为原子、氢的扩散包括氢气吸附于金属膜表面,氢分子分解为原子、氢的扩散包括氢气吸附于金属膜表面,氢分子分解为原子、离子,以及氢离子在金属膜中的扩散等过程。扩散达到稳定离子,以及氢离子在金属膜中的扩散等过程。扩散达到稳定离子,以及氢离子在金属膜中的扩散等过程。扩散达到稳定离子,以及氢离子在金属膜中的扩散等过程。扩散达到稳定时的边界条件为时的边界条件为时的边界条件为时的边界条
16、件为浓度浓度浓度浓度C1C1、C2C2可由热分解反应可由热分解反应可由热分解反应可由热分解反应的平衡常数的平衡常数的平衡常数的平衡常数KK决定。设氢原子的浓度为决定。设氢原子的浓度为决定。设氢原子的浓度为决定。设氢原子的浓度为C C,则有:,则有:,则有:,则有:第23页,本讲稿共96页S S为为为为SievertSievert定律常数,定律常数,定律常数,定律常数,因此,边界条件可改写为:因此,边界条件可改写为:因此,边界条件可改写为:因此,边界条件可改写为:即:即:即:即:对稳定扩散,有:对稳定扩散,有:对稳定扩散,有:对稳定扩散,有:第24页,本讲稿共96页所以:所以:所以:所以:表明金
17、属膜中氢原子的浓度为直线分布,其中积分表明金属膜中氢原子的浓度为直线分布,其中积分表明金属膜中氢原子的浓度为直线分布,其中积分表明金属膜中氢原子的浓度为直线分布,其中积分常数常数常数常数a a、b b可由边界条件确定:可由边界条件确定:可由边界条件确定:可由边界条件确定:第25页,本讲稿共96页单位时间透过面积为单位时间透过面积为单位时间透过面积为单位时间透过面积为A A的金属膜的氢气量为:的金属膜的氢气量为:的金属膜的氢气量为:的金属膜的氢气量为:由此可知,在本例所示的一维扩散中,只要保持由此可知,在本例所示的一维扩散中,只要保持由此可知,在本例所示的一维扩散中,只要保持由此可知,在本例所示
18、的一维扩散中,只要保持p p1 1、p p2 2恒定,膜中任意点的浓度就会保持不变,而且通恒定,膜中任意点的浓度就会保持不变,而且通恒定,膜中任意点的浓度就会保持不变,而且通恒定,膜中任意点的浓度就会保持不变,而且通过任何截面的流量过任何截面的流量过任何截面的流量过任何截面的流量,通量通量通量通量J J均为相等的常数。均为相等的常数。均为相等的常数。均为相等的常数。第26页,本讲稿共96页引入金属的透气率引入金属的透气率引入金属的透气率引入金属的透气率P P,表示单位厚度金属在单位压差下,表示单位厚度金属在单位压差下,表示单位厚度金属在单位压差下,表示单位厚度金属在单位压差下单位面积透过的气体
19、流量单位面积透过的气体流量单位面积透过的气体流量单位面积透过的气体流量式中式中式中式中D D为扩散系数,为扩散系数,为扩散系数,为扩散系数,S S为气体在金属中的溶解度,则有为气体在金属中的溶解度,则有为气体在金属中的溶解度,则有为气体在金属中的溶解度,则有在实际中,为了减少氢气的渗漏现象,多采用球形容在实际中,为了减少氢气的渗漏现象,多采用球形容在实际中,为了减少氢气的渗漏现象,多采用球形容在实际中,为了减少氢气的渗漏现象,多采用球形容器、选用氢的扩散系数及溶解度较小的金属,以及尽器、选用氢的扩散系数及溶解度较小的金属,以及尽器、选用氢的扩散系数及溶解度较小的金属,以及尽器、选用氢的扩散系数
20、及溶解度较小的金属,以及尽量增加容器壁厚等。量增加容器壁厚等。量增加容器壁厚等。量增加容器壁厚等。第27页,本讲稿共96页考虑一高压氧气球罐的氧气泄漏问题。设氧气球考虑一高压氧气球罐的氧气泄漏问题。设氧气球考虑一高压氧气球罐的氧气泄漏问题。设氧气球考虑一高压氧气球罐的氧气泄漏问题。设氧气球罐内外半径分别为罐内外半径分别为罐内外半径分别为罐内外半径分别为r r1 1和和和和r r2 2,罐中氧气压力为,罐中氧气压力为,罐中氧气压力为,罐中氧气压力为p p1 1,罐,罐,罐,罐外氧气压力为大气中氧分压外氧气压力为大气中氧分压外氧气压力为大气中氧分压外氧气压力为大气中氧分压p p2 2。由于氧气泄漏
21、量非。由于氧气泄漏量非。由于氧气泄漏量非。由于氧气泄漏量非常小,因此可以认为常小,因此可以认为常小,因此可以认为常小,因此可以认为p p1 1不随时间变化,即在达到稳不随时间变化,即在达到稳不随时间变化,即在达到稳不随时间变化,即在达到稳定状态时氧气将以一恒定速率泄漏。定状态时氧气将以一恒定速率泄漏。定状态时氧气将以一恒定速率泄漏。定状态时氧气将以一恒定速率泄漏。氧气通过球罐壁氧气通过球罐壁扩散泄漏示意图扩散泄漏示意图第28页,本讲稿共96页由由由由FickFick第一定律可知,单位时间内氧气泄漏量为第一定律可知,单位时间内氧气泄漏量为第一定律可知,单位时间内氧气泄漏量为第一定律可知,单位时间
22、内氧气泄漏量为:式中式中式中式中D D和和和和dc/drdc/dr分别为氧分子在球罐壁内的扩散系数和分别为氧分子在球罐壁内的扩散系数和分别为氧分子在球罐壁内的扩散系数和分别为氧分子在球罐壁内的扩散系数和浓度梯度。对上式积分得:浓度梯度。对上式积分得:浓度梯度。对上式积分得:浓度梯度。对上式积分得:式中式中式中式中c c1 1和和和和c c2 2分别为氧气分子在球罐内壁和外壁表面的分别为氧气分子在球罐内壁和外壁表面的分别为氧气分子在球罐内壁和外壁表面的分别为氧气分子在球罐内壁和外壁表面的溶解浓度。溶解浓度。溶解浓度。溶解浓度。第29页,本讲稿共96页根据根据根据根据SievertSievert定
23、律可以得到单位时间内氧气泄漏量:定律可以得到单位时间内氧气泄漏量:定律可以得到单位时间内氧气泄漏量:定律可以得到单位时间内氧气泄漏量:第30页,本讲稿共96页7.7.3 3 扩散的热力学理论扩散的热力学理论动力学理论的不足:动力学理论的不足:没有指出扩散推动力。即使不存在浓度没有指出扩散推动力。即使不存在浓度梯度,只要扩散质点受到力场的作用就会出梯度,只要扩散质点受到力场的作用就会出现定向物质流。所以用浓度梯度作为扩散的现定向物质流。所以用浓度梯度作为扩散的推动力显然是不确切的推动力显然是不确切的第31页,本讲稿共96页扩散的一般推动力扩散的一般推动力 根据热力学理论,认为扩散过程与其他物理化
24、学根据热力学理论,认为扩散过程与其他物理化学过程一样,其发生的过程一样,其发生的根本推动力应该是化学位梯度根本推动力应该是化学位梯度。一切影响扩散的外场(电场、磁场、应力场等)一切影响扩散的外场(电场、磁场、应力场等)都可统一于化学位梯度之中,且仅当化学位梯都可统一于化学位梯度之中,且仅当化学位梯度为零,系统扩散方可达到平衡。度为零,系统扩散方可达到平衡。第32页,本讲稿共96页设在多组分体系中设在多组分体系中i组分的质点由高化学位向低化学位扩散,组分的质点由高化学位向低化学位扩散,质点所受的力等于该组分化学位在质点所受的力等于该组分化学位在x方向上梯度的负值:方向上梯度的负值:ViFi高高u
25、低低u相应质点运动平均速度相应质点运动平均速度Vi正比于作用力正比于作用力FiBi单位作用力下单位作用力下i 组分质点的平组分质点的平均速度或淌度均速度或淌度第33页,本讲稿共96页组分组分i的扩散通量的扩散通量Ji等于单位体积中该组分质点数等于单位体积中该组分质点数Ci和和质点移动平均速度的乘积。质点移动平均速度的乘积。推导得扩散系数的一般热力学方程推导得扩散系数的一般热力学方程扩散系数热力学因子扩散系数热力学因子u对于理想混合体系,活度系数对于理想混合体系,活度系数自扩散系数;自扩散系数;Di组分组分i的分扩散系数,或本征扩散系数的分扩散系数,或本征扩散系数第34页,本讲稿共96页u 对于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七 固体 扩散 优秀 课件
限制150内