《结构动力学》PPT课件.ppt
《《结构动力学》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《结构动力学》PPT课件.ppt(101页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第14章 结构动力学动力计算概述动力计算概述动力计算概述动力计算概述单自由度体系的自由振动单自由度体系的自由振动单自由度体系的自由振动单自由度体系的自由振动单自由度体系的强迫振动单自由度体系的强迫振动单自由度体系的强迫振动单自由度体系的强迫振动多自由度体系的自由振动多自由度体系的自由振动多自由度体系的自由振动多自由度体系的自由振动多自由度体系的强迫振动多自由度体系的强迫振动多自由度体系的强迫振动多自由度体系的强迫振动频率的近似计算频率的近似计算频率的近似计算频率的近似计算知识点知识点教学基本要求教学基本要求了解结构动力计算的特点,能够判断动力计算自由度;了解结构动力计算的特点,能够判断动力计算
2、自由度;掌握单体系振动微分方程的建立方法。掌握单体系振动微分方程的建立方法。掌握单自由度体系在不同的动荷载作用下强迫振动掌握单自由度体系在不同的动荷载作用下强迫振动的分析方法以及动力特性。掌握阻尼对单自由度体的分析方法以及动力特性。掌握阻尼对单自由度体系动力特性的影响。系动力特性的影响。理解柔度法和刚度法建立振动微分方程的思路。掌理解柔度法和刚度法建立振动微分方程的思路。掌握两个自由度体系的频率方程和自振频率的求解,握两个自由度体系的频率方程和自振频率的求解,理解主振型和主振型正交性,掌握振型分解法。理解主振型和主振型正交性,掌握振型分解法。了解计算频率的几种近似法了解计算频率的几种近似法能够
3、正确计算单自由度体系的固有频率和周期。能够正确计算单自由度体系的固有频率和周期。1 1、动力计算的特点、目的和内容、动力计算的特点、目的和内容1)1)特点:静力荷载与动力荷载的特点及其效应。特点:静力荷载与动力荷载的特点及其效应。静力荷载静力荷载是指其大小、方向和作用位置不随时间而变化的荷载。这是指其大小、方向和作用位置不随时间而变化的荷载。这类荷载类荷载对结构产生的惯性力可以忽略不计对结构产生的惯性力可以忽略不计,由它所引起的内力和变形都,由它所引起的内力和变形都是确定的。是确定的。动力荷载动力荷载是指其大小、方向和作用位置随时间而变化的荷载。这类是指其大小、方向和作用位置随时间而变化的荷载
4、。这类荷载荷载对结构产生的惯性力不能忽略对结构产生的惯性力不能忽略,因动力荷载将使结构产生相当大的加,因动力荷载将使结构产生相当大的加速度,由它所引起的内力和变形都是时间的函数。速度,由它所引起的内力和变形都是时间的函数。与静力计算的对比与静力计算的对比:两者都是建立平衡方程,但动力计算,利用动静法,两者都是建立平衡方程,但动力计算,利用动静法,建立的是形式上的平衡方程。力系中包含了惯性力,考虑的是瞬间平衡,荷建立的是形式上的平衡方程。力系中包含了惯性力,考虑的是瞬间平衡,荷载、内力都是时间的函数。建立的载、内力都是时间的函数。建立的平衡方程是微分方程平衡方程是微分方程。2)2)目的和内容目的
5、和内容 计算结构的动力反应计算结构的动力反应:内力、位移、速度与加速度,使结构在动内力:内力、位移、速度与加速度,使结构在动内力与静内力共同作用下满足强度和变形的要求。与静内力共同作用下满足强度和变形的要求。动力计算的内容动力计算的内容:研究结构在动荷载作用下的动力反应的计算原理和:研究结构在动荷载作用下的动力反应的计算原理和方法。方法。涉及到内外两方面的因素:涉及到内外两方面的因素:(1 (1)确定动力荷载(外部因素,即干扰力);)确定动力荷载(外部因素,即干扰力);(2 (2)确定结构的动力特性(内部因素,如结构的自振频率、周期、振型)确定结构的动力特性(内部因素,如结构的自振频率、周期、
6、振型和阻尼等等),类似静力学中的和阻尼等等),类似静力学中的I I、S S等;等;计算动位移及其幅值;计算动内力及其幅值。计算动位移及其幅值;计算动内力及其幅值。P(t)tPt简谐荷载(按正余弦规律变化)简谐荷载(按正余弦规律变化)一般周期荷载一般周期荷载2 2、动力荷载分类、动力荷载分类 按起变化规律及其作用特点可分为:按起变化规律及其作用特点可分为:1 1)周期荷载:随时间作周期性变化。)周期荷载:随时间作周期性变化。(转动电机的偏心力)(转动电机的偏心力)2 2)冲击荷载)冲击荷载:短时内剧增或剧减。(如爆炸荷载)短时内剧增或剧减。(如爆炸荷载)PtP(t)ttrPtrP 3 3、动力计
7、算中体系的自由度、动力计算中体系的自由度 确定体系上全部质量位置所需独立参数的个数称为确定体系上全部质量位置所需独立参数的个数称为体系的振动自由度体系的振动自由度。实际结构的质量都是连续分布的,严格地说来都是无限自由度体系。实际结构的质量都是连续分布的,严格地说来都是无限自由度体系。计算困难,常作简化如下:计算困难,常作简化如下:1)1)集中质量法集中质量法 把连续分布的质量集中为几个质点,将一个无限自由度的问题简化成有把连续分布的质量集中为几个质点,将一个无限自由度的问题简化成有限自由度问题。限自由度问题。3 3)随机荷载)随机荷载:(非确定性荷载非确定性荷载)荷载在将来任一时刻的数值无法事
8、先确定。荷载在将来任一时刻的数值无法事先确定。(如地震荷载、风荷载)(如地震荷载、风荷载)2 2个自由度个自由度y2y12 2个自由度个自由度自由度与质量数不一定相等自由度与质量数不一定相等mmm梁m+m梁II2Im+m柱厂房排架水平振厂房排架水平振时的计算简图时的计算简图单自由度体系单自由度体系水平振动时的计算体系水平振动时的计算体系多自由度体系多自由度体系构架式基础顶板简化成刚性块构架式基础顶板简化成刚性块(t)v(t)u(t)4 4个自由度个自由度m1m2m32 2个自由度个自由度y(x,t)x无限自由度体系无限自由度体系2)2)广义座标法:广义座标法:如简支梁的变形曲线可用三角级数来表
9、示如简支梁的变形曲线可用三角级数来表示 用几条函数曲线来描述体系的振动曲用几条函数曲线来描述体系的振动曲线就称它是几个自由度体系,其中线就称它是几个自由度体系,其中 是根据边界约束条件选取是根据边界约束条件选取的函数,称为形状函数。的函数,称为形状函数。ak(t)称广义座标,为一组待称广义座标,为一组待定参数,其个数即为自由度数,用此法可定参数,其个数即为自由度数,用此法可将无限自由度体系简化为有限自由度体系。将无限自由度体系简化为有限自由度体系。x yxa1,a2,.any(x,t)4 4、动力计算的方法、动力计算的方法动力平衡法(达朗伯尔原理)动力平衡法(达朗伯尔原理)m.运动方程运动方程
10、m设其中设其中P(t)I(t).平衡方程平衡方程I(t)惯性力,与加速度成正比,方向相反惯性力,与加速度成正比,方向相反改写改写成成虚功原理(拉格朗日方程)虚功原理(拉格朗日方程)哈米顿原理(变分方程哈米顿原理(变分方程)都要用到抽象的虚位移概念都要用到抽象的虚位移概念 自由振动:自由振动:体系在振动过程中没有动荷载的作用。体系在振动过程中没有动荷载的作用。静平衡位置静平衡位置m获得初位移获得初位移ym获得初速度获得初速度自由振动产生原因自由振动产生原因:体系在初始时刻(:体系在初始时刻(t=t=0 0)受到外界的干扰。)受到外界的干扰。研究单自由度体系的自由振动重要性在于:研究单自由度体系的
11、自由振动重要性在于:1)1)它代表了许多实际工程问题,如水塔、单层厂房等。它代表了许多实际工程问题,如水塔、单层厂房等。2)2)它是分析多自由度体系的基础,包含了许多基本概念。它是分析多自由度体系的基础,包含了许多基本概念。自由振动反映了体系的固有动力特性。自由振动反映了体系的固有动力特性。要解决的问题包括:要解决的问题包括:建立运动方程、计算自振频率、周期和阻尼建立运动方程、计算自振频率、周期和阻尼.1 1、运动微分方程的建立、运动微分方程的建立方法:达朗伯尔原理方法:达朗伯尔原理应用条件:微幅振动(线性微分方程)应用条件:微幅振动(线性微分方程)1)1)刚度法:刚度法:研究作用于被隔离的质
12、量上的力,建立平衡方程。研究作用于被隔离的质量上的力,建立平衡方程。m.yj.yd静平衡位置静平衡位置质量质量m m在任一时刻的位移在任一时刻的位移 y(t)=yj+ydk力学模型力学模型.ydmmWS(t)I(t)+重力重力 W弹性力弹性力 恒与位移反向恒与位移反向惯性力惯性力(a)其中其中 kyj=W 上式可以简化为上式可以简化为或或由平衡位置计量。以位移为未知量的平衡方程式,引用了刚度系数,称由平衡位置计量。以位移为未知量的平衡方程式,引用了刚度系数,称刚度法。刚度法。(a)2)2)柔度法:柔度法:研究结构上质点的位移,建立位移协调方程。研究结构上质点的位移,建立位移协调方程。.m静平衡
13、位置静平衡位置I(t)可得与可得与 (b b)相同的方程相同的方程刚度法常用于刚架类结构,柔度法常用于梁式结构。刚度法常用于刚架类结构,柔度法常用于梁式结构。2 2、自由振动微分方程的解、自由振动微分方程的解改写为改写为其中其中它是二阶线性齐次微分方程,其一般解为:它是二阶线性齐次微分方程,其一般解为:积分常数积分常数C C1 1,C C2 2由初始条件确定由初始条件确定设设 t=0 时时(d)式可以写成式可以写成 由上式可知,位移是由初位移由上式可知,位移是由初位移y 引起的余弦运动和由初速度引起的余弦运动和由初速度v 引起的正弦引起的正弦运动的合成运动的合成.由上式可知,位移是由初位移由上
14、式可知,位移是由初位移y y 引起的余弦运动和由初速度引起的余弦运动和由初速度v v 引起的正弦引起的正弦运动的合成,为了便于研究合成运动运动的合成,为了便于研究合成运动,令令(e)式改写成式改写成它表示合成运动仍是一个简谐运动。其中它表示合成运动仍是一个简谐运动。其中A A和和 可由下式确定可由下式确定振幅振幅相位角相位角y0ty-yTTTyt0yt0 A-A3 3、结构的自振周期和频率、结构的自振周期和频率由式由式及图可见位移方程是一个及图可见位移方程是一个周期函数。周期函数。Tyt0 A-A周期周期工程频率工程频率园频率园频率计算频率和周期的几种形式计算频率和周期的几种形式其中是沿质点振
15、动方向的结构柔度系数,它表示在质点上沿振动方向是沿质点振动方向的结构柔度系数,它表示在质点上沿振动方向加单位荷载使质点沿振动方向所产生的位移加单位荷载使质点沿振动方向所产生的位移。k k使质点沿振动方向发生单位位移时,须在质点上沿振动方向施加的使质点沿振动方向发生单位位移时,须在质点上沿振动方向施加的力力。stst=W=W在质点上沿振动方向施加数值为在质点上沿振动方向施加数值为W W的荷载时质点沿振动方向所的荷载时质点沿振动方向所产生的位移产生的位移。计算时可根据体系的具体情况,视计算时可根据体系的具体情况,视、k k、st st 三参数中哪一个最便于三参数中哪一个最便于计算来选用。计算来选用
16、。一些重要性质一些重要性质:(1 1)自振周期与且只与结构的质量和结构的刚度有关,与外界的干扰因)自振周期与且只与结构的质量和结构的刚度有关,与外界的干扰因素无关。干扰力只影响振幅素无关。干扰力只影响振幅。(2 2)自振周期与质量的平方根成正比,质量越大,周期越大(频率越小)自振周期与质量的平方根成正比,质量越大,周期越大(频率越小);自振周期与刚度的平方根成反比,刚度越大,周期越小(频率越大);自振周期与刚度的平方根成反比,刚度越大,周期越小(频率越大);要改变结构的自振周期,只有从改变结构的质量或刚度着手。要改变结构的自振周期,只有从改变结构的质量或刚度着手。(3 3)两个外形相似的结构,
17、如果周期相差悬殊,则动力性能相差很大。)两个外形相似的结构,如果周期相差悬殊,则动力性能相差很大。反之,两个外形看来并不相同的结构,如果其自振周期相近,则在动荷反之,两个外形看来并不相同的结构,如果其自振周期相近,则在动荷载作用下的动力性能基本一致载作用下的动力性能基本一致,是结构动力特性的重要数量标志。是结构动力特性的重要数量标志。例例1.1.计算图示结构的频率和周期。计算图示结构的频率和周期。mEI l/2 l/21例例2.2.计算图示结构的水平和竖向振动频率。计算图示结构的水平和竖向振动频率。mlA,E,IE,I1E,A1IIEI1=mhk例例3.3.计算图示刚架的频率和周期。计算图示刚
18、架的频率和周期。由截面平衡由截面平衡例例4 4、图示三根单跨梁,、图示三根单跨梁,EIEI为常数,在梁中点有集中质量为常数,在梁中点有集中质量m m,不考,不考虑梁的质量,试比较三者的自振频率。虑梁的质量,试比较三者的自振频率。l/2l/2l/2l/2l/2l/2mmm解:解:1 1)求)求P=13l/165l/32P=1l/2据此可得据此可得:1 2 3=1 2 结构约束越强结构约束越强,其刚度越大其刚度越大,刚度越大刚度越大,其自振动频率也越大。其自振动频率也越大。1例例5 5、求图示结构的自振圆频率。、求图示结构的自振圆频率。解法解法1 1:求:求 k=1/hMBA=kh=MBCklhm
19、IEIBAC1h解法解法2 2:求:求 例例6 6、求图示结构的自振频率。、求图示结构的自振频率。lEImk1k11k11k解:求解:求 k对于静定结构一般计算柔度系数方便。对于静定结构一般计算柔度系数方便。如果让振动体系沿振动方向发生单位位移时,所有刚节点如果让振动体系沿振动方向发生单位位移时,所有刚节点都不能发生转动(如横梁刚度为都不能发生转动(如横梁刚度为刚架刚架)计算刚度系数方便。计算刚度系数方便。一端铰结的杆的侧移刚度为一端铰结的杆的侧移刚度为:两端刚结的杆的侧移刚度为两端刚结的杆的侧移刚度为:4 4、简谐自由振动的特性、简谐自由振动的特性由式由式可得,可得,加速度为加速度为:在无阻
20、尼自由振动中,在无阻尼自由振动中,位移、加速度和惯性力位移、加速度和惯性力都按正弦规律变化,且都按正弦规律变化,且作作相位相同的同步运动相位相同的同步运动,即它们在同一时刻均达极值,而且惯性力的方向与位,即它们在同一时刻均达极值,而且惯性力的方向与位移的方向一致。移的方向一致。它们的幅值产生于它们的幅值产生于时,其值分别为:时,其值分别为:既然在运动的任一瞬时质体都处于平衡状态,在幅值出现时间也一样,既然在运动的任一瞬时质体都处于平衡状态,在幅值出现时间也一样,于是可于是可在幅值处建立运动方程在幅值处建立运动方程,此时方程中将不含时间,此时方程中将不含时间t t,结果把,结果把微分方程转微分方
21、程转化为代数方程化为代数方程了,使计算得以简化。了,使计算得以简化。惯性力为:惯性力为:例例7.7.计算图示体系的自振频率。计算图示体系的自振频率。ABCDEI=l/2 l/2lkBCk.A1.A2 解:单自由度体系,以解:单自由度体系,以 表示位移表示位移参数的幅值参数的幅值,各质点上所受的力各质点上所受的力为:为:建立力矩平衡方程建立力矩平衡方程化简后得化简后得5 5、阻尼对振动的影响、阻尼对振动的影响 实验证明,振动中的结构,不仅产生与变形成比例的弹性内力,还产生实验证明,振动中的结构,不仅产生与变形成比例的弹性内力,还产生非弹性的内力,非弹性的内力,非弹性力起阻尼作用非弹性力起阻尼作用
22、。在不考虑阻尼的情况下所得出的某些。在不考虑阻尼的情况下所得出的某些结论也反应了结构的振动规律,如:结论也反应了结构的振动规律,如:事实上,由于非弹性力的存在,自由振动会衰减直到停止;共振时振幅也事实上,由于非弹性力的存在,自由振动会衰减直到停止;共振时振幅也不会无限增大,而是一个有限值。非弹性力起着减小振幅的作用,使振动衰减,不会无限增大,而是一个有限值。非弹性力起着减小振幅的作用,使振动衰减,因此,为了进一步了解结构的振动规律,就要研究阻尼。因此,为了进一步了解结构的振动规律,就要研究阻尼。1)1)阻尼的存在阻尼的存在忽略阻尼的振动规律忽略阻尼的振动规律考虑阻尼的振动规律考虑阻尼的振动规律
23、结构的自振频率是结构的固有特性,与外因无关。结构的自振频率是结构的固有特性,与外因无关。简谐荷载作用下有可能出现共振。简谐荷载作用下有可能出现共振。自由振动的振幅永不衰减。自由振动的振幅永不衰减。自由振动的振幅逐渐衰减。自由振动的振幅逐渐衰减。共振时的振幅趋于无穷大。共振时的振幅趋于无穷大。共振时的振幅较大但为有限值。共振时的振幅较大但为有限值。2)2)在建筑物中产生阻尼、耗散能量的因素在建筑物中产生阻尼、耗散能量的因素(1(1)结构在变形过程中材料内部有摩擦,称)结构在变形过程中材料内部有摩擦,称“内摩擦内摩擦”,耗散能量;,耗散能量;(2 (2)建筑物基础的振动引起土壤发生振动,此振动以波
24、的形式向周围扩散,)建筑物基础的振动引起土壤发生振动,此振动以波的形式向周围扩散,振动波在土壤中传播而耗散能量;振动波在土壤中传播而耗散能量;(3(3)土体内摩擦、支座上的摩擦、结点上的摩擦和空气阻尼等等。)土体内摩擦、支座上的摩擦、结点上的摩擦和空气阻尼等等。振动的衰减和能量的耗散都通过非弹性力来考虑,由于对非弹性力的描述振动的衰减和能量的耗散都通过非弹性力来考虑,由于对非弹性力的描述不同,目前主要有两种阻尼理论:不同,目前主要有两种阻尼理论:*粘滞阻尼理论粘滞阻尼理论非弹性力与变形速度成正比非弹性力与变形速度成正比:*滞变阻尼理论滞变阻尼理论关于阻尼,有两种定义或理解:关于阻尼,有两种定义
25、或理解:(1(1)使振动衰减的作用;)使振动衰减的作用;(2(2)使能量耗散。)使能量耗散。3)3)阻尼力的确定:阻尼力的确定:总与质点速度反向;大小与质点速度有如下关系:总与质点速度反向;大小与质点速度有如下关系:(1 (1)与质点速度成正比(比较常用,称为粘滞阻尼)。)与质点速度成正比(比较常用,称为粘滞阻尼)。(2 (2)与质点速度平方成正比(如质点在流体中运动受到的阻力)。)与质点速度平方成正比(如质点在流体中运动受到的阻力)。(3 (3)与质点速度无关(如摩擦力)。)与质点速度无关(如摩擦力)。其他阻尼力也可化为等效粘滞阻尼力来分析。其他阻尼力也可化为等效粘滞阻尼力来分析。ykykm
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构动力学 结构 动力学 PPT 课件
限制150内