连续体结构拓扑优化方法及存在问题分析.docx
《连续体结构拓扑优化方法及存在问题分析.docx》由会员分享,可在线阅读,更多相关《连续体结构拓扑优化方法及存在问题分析.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、连续体结构拓扑优化方法及存在问题分析文章深入分析国内外连续体结构拓扑优化的研究现状,介绍了拓扑优化方法的发展及实现过程中存在的问题。对比分析了均匀化方法,渐进结构优化法,变密度法的优缺点。研究了连续体结构拓扑优化过程中产生数值不稳定现象的原因,重点讨论了灰度单元,棋盘格式,网格依赖性的数值不稳定现象,并针对每一种数值不稳定现象提出了相应的解决办法。 结构拓扑优化设计的主要对象是连续体结构,1981年程耿东和Olhof在研究中指出:为了得到实心弹性薄板材料分布的全局最优解,必须扩大设计空间,得到由无限细肋增强的板设计。此研究被认为是近现代连续体结构拓扑优化的先驱。 目前,国内外学者对结构拓扑优化
2、问题进行了大量研究,这些研究大多数建立在有限元法结构分析的基础上,但由于有限元法中单元网格的存在,结构拓扑优化过程中常常出现如灰度单元,网格依赖性和棋盘格等数值不稳定的现象。本文介绍了几种连续体结构拓扑优化方法及每种方法存在的问题,并提出了相应的解决办法。 1.拓扑优化方法 连续体结构拓扑优化开始于1988年Bendoe和Kikuchi提出的均匀化方法,此后许多学者相继提出了渐进结构优化方法、变密度法等拓扑优化数学建模方法。 1.1.均匀化方法 均匀化方法即在设计区域内构造周期性分布的微结构,这些微结构是由同一种各向同性材料实体和孔洞复合而成。采用有限元方法进行分析,在每个单元内构造不同尺寸的
3、微结构,微结构的尺寸和方向为拓扑优化设计变量。1988年Bendsoe研究发现,通过在结构中引入具有空洞微结构的材料模型,将困难的拓扑设计问题转换为相对简单的材料微结构尺寸优化问题。 很多学者发展了均匀化方法,Suzhk进行了基于均匀化方法结构形状和拓扑优化协同设计。Hassani等全面系统的总结了基于均匀化理论的拓扑优化理论和算法。该方法的优点:数学理论严谨,在理解拓扑优化的理论框架方面有重要的意义。缺点:(1)均匀化弹性张量的求解操作繁琐,内部微结构的形状和方向难以确定。(2)计算结果容易产生棋盘格和多孔材料等数值不稳定性问题,可制造性差。 1.2.渐进结构优化法 渐进结构优化的设计理论与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 连续 结构 拓扑 优化 方法 存在 问题 分析
限制150内