常微分方程第三版答案王高雄等.doc
《常微分方程第三版答案王高雄等.doc》由会员分享,可在线阅读,更多相关《常微分方程第三版答案王高雄等.doc(89页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、习题2.11.,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得2并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:3解:原式可化为: 12解1516解: ,这是齐次方程,令17. 解:原方程化为 令方程组则有令当当另外 19. 已知f(x).解:设f(x)=y, 则原方程化为 两边求导得20.求具有性质 x(t+s)=的函数x(t),已知x(0)存在。解:令t=s=0 x(0)= 若x(0)0 得x=-1矛盾。所以x(0)=0. x(t)=) 两边积分得arctg x(t)=x(0)t+c 所以x(t)=tgx(0)t+c 当t=0时 x(0)=0 故c=0
2、所以x(t)=tgx(0)t21.求一曲线,使它的切线坐标轴间的部分初切点分成相等的部分。解:设(x +y )为所求曲线上任意一点,则切线方程为:y=y(x- x )+ y 则与x轴,y轴交点分别为: x= x - y= y - x y 则 x=2 x = x - 所以 xy=c23.求曲线上任意一点切线与该点的向径夹角为0的曲线方程,其中 = 。解:由题意得:y= dy= dx ln|y|=ln|xc| y=cx. = 则y=tgx 所以 c=1 y=x.24.证明曲线上的切线的斜率与切点的横坐标成正比的曲线是抛物线。 证明:设(x,y)为所求曲线上的任意一点,则y=kx 则:y=kx +c
3、 即为所求。习题2.2求下列方程的解1=解: y=e (e)=e-e()+c=c e- ()是原方程的解。2+3x=e解:原方程可化为:=-3x+e所以:x=e (e e) =e (e+c) =c e+e 是原方程的解。3=-s+解:s=e(e )=e()= e()= 是原方程的解。4 , n为常数.解:原方程可化为: 是原方程的解.5+=解:原方程可化为:=- ()= 是原方程的解.6 解: =+令 则 =u因此:= (*) 将带入 (*)中 得:是原方程的解.13这是n=-1时的伯努利方程。两边同除以,令 P(x)= Q(x)=-1由一阶线性方程的求解公式 =14 两边同乘以 令 这是n=
4、2时的伯努利方程。两边同除以 令 P(x)= Q(x)=由一阶线性方程的求解公式 = =15 这是n=3时的伯努利方程。两边同除以 令 = P(y)=-2y Q(y)= 由一阶线性方程的求解公式 =16 y=+P(x)=1 Q(x)= 由一阶线性方程的求解公式 = =c=1y=17 设函数(t)于t上连续,(0)存在且满足关系式(t+s)=(t)(s)试求此函数。令t=s=0 得(0+0)=(0)(0) 即(0)= 故或(1) 当时 即 ,) (2) 当时 = = =于是 变量分离得 积分 由于,即t=0时 1=c=1故 20.试证: (1)一阶非齐线性方程(2 .28)的任两解之差必为相应的
5、齐线性方程(2.3)之解; (2)若是(2.3)的非零解,而是(2.28)的解,则方程(2.28)的通解可表为,其中为任意常数.(3)方程(2.3)任一解的常数倍或任两解之和(或差)仍是方程(2.3)的解.证明: (2.28) (2.3)(1) 设,是(2.28)的任意两个解则 (1) (2)(1)-(2)得 即是满足方程(2.3)所以,命题成立。(2) 由题意得: (3) (4)1)先证是(2.28)的一个解。于是 得故是(2.28)的一个解。2)现证方程(4)的任一解都可写成的形式设是(2.28)的一个解则 (4)于是 (4)-(4)得从而 即 所以,命题成立。(3) 设,是(2.3)的任
6、意两个解则 (5) (6)于是(5)得 即 其中为任意常数也就是满足方程(2.3)(5)(6)得 即 也就是满足方程(2.3)所以命题成立。21.试建立分别具有下列性质的曲线所满足的微分方程并求解。(5) 曲线上任一点的切线的纵截距等于切点横坐标的平方;(6) 曲线上任一点的切线的纵截距是切点横坐标和纵坐标的等差中项;解:设为曲线上的任一点,则过点曲线的切线方程为从而此切线与两坐标轴的交点坐标为即 横截距为 , 纵截距为 。由题意得:(5) 方程变形为 于是 所以,方程的通解为。(6)方程变形为 于是 所以,方程的通解为。22求解下列方程。(1)解: = = = (2) P(x)= Q(x)=
7、由一阶线性方程的求解公式 = = =习题2.31、验证下列方程是恰当方程,并求出方程的解。1. 解: ,=1 .则所以此方程是恰当方程。凑微分,得 :2 解: , .则 .所以此方程为恰当方程。凑微分,得 3 解: 则 .因此此方程是恰当方程。 (1) (2)对(1)做的积分,则= (3)对(3)做的积分,则=则故此方程的通解为4、 解: , . .则此方程为恰当方程。凑微分,得 :5.(sin-cos+1)dx+( cos- sin+)dy=0解: M=sin-cos+1 N= cos- sin+=- sin-cos- cos+sin=- sin-cos- cos+sin所以,=,故原方程为
8、恰当方程因为sindx-cosdx+dx+ cosdy- sindy+dy=0d(-cos)+d (sin)+dx+d(-)=0所以,d(sin-cos+x -)=0故所求的解为sin-cos+x -=C求下列方程的解:62x(y-1)dx+dy=0解:= 2x , =2x所以,=,故原方程为恰当方程又2xydx-2xdx+dy=0所以,d(y-x)=0故所求的解为y-x=C7.(e+3y)dx+2xydy=0解:edx+3ydx+2xydy=0exdx+3xydx+2xydy=0所以,d e( x-2x+2)+d( xy)=0即d e( x-2x+2)+ xy=0故方程的解为e( x-2x+
9、2)+ xy=C8. 2xydx+( x+1)dy=0解:2xydx+ xdy+dy=0d( xy)+dy=0即d(xy+y)=0故方程的解为xy+y=C9、解:两边同除以 得即,故方程的通解为10、解:方程可化为:即, 故方程的通解为: 即:同时,y=0也是方程的解。11、解:方程可化为: 即:故方程的通解为:12、解:方程可化为:故方程的通解为 : 即:13、解:这里 , 方程有积分因子两边乘以得:方程是恰当方程故方程的通解为:即:14、解:这里因为故方程的通解为: 即:15、解:这里 方程有积分因子: 两边乘以得:方程为恰当方程故通解为 :即:16、解:两边同乘以得:故方程的通解为:17
10、、试导出方程具有形为和的积分因子的充要条件。解:若方程具有为积分因子, (是连续可导)令 , ., , , 方程有积分因子的充要条件是:是的函数,此时,积分因子为 . 令 ,此时的积分因子为18. 设及连续,试证方程为线性方程的充要条件是它有仅依赖于的积分因子.证:必要性 若该方程为线性方程,则有 ,此方程有积分因子,只与有关 .充分性 若该方程有只与有关的积分因子 .则为恰当方程 ,从而 , , .其中 .于是方程可化为即方程为一阶线性方程.20.设函数f(u),g(u)连续、可微且f(u)g(u),,试证方程yf(xy)dx+xg(xy)dy=0有积分因子u=(xyf(xy)-g(xy)证
11、:在方程yf(xy)dx+xg(xy)dy=0两边同乘以u得:uyf(xy)dx+uxg(xy)dy=0则=uf+uy+yf=+-yf=而=ug+ux+xg=+- xg=故=,所以u是方程得一个积分因子21假设方程(2.43)中得函数M(x,y)N(x,y)满足关系=Nf(x)-Mg(y),其中f(x),g(y)分别为x和y得连续函数,试证方程(2.43)有积分因子u=exp(+)证明:M(x,y)dx+N(x,y)dy=0即证u+M=u+Nu(-)=N- Mu(-)=Nef(x)-M eg(y)u(-)=e(Nf(x)-Mg(y)由已知条件上式恒成立,故原命题得证。22、求出伯努利方程的积分
12、因子.解:已知伯努利方程为:两边同乘以,令,线性方程有积分因子:,故原方程的积分因子为:,证毕!23、设是方程的积分因子,从而求得可微函数,使得试证也是方程的积分因子的充要条件是其中是的可微函数。证明:若,则又即为的一个积分因子。24、设是方程的两个积分因子,且常数,求证(任意常数)是方程的通解。证明:因为是方程的积分因子所以 为恰当方程即 ,下面只需证的全微分沿方程恒为零事实上:即当时,是方程的解。证毕!习题 2.4求解下列方程1、解:令,则, 从而, 于是求得方程参数形式得通解为.2、解:令,则,即,从而 ,于是求得方程参数形式得通解为.3、解:令,则,从而 = ,于是求得方程参数形式的通
13、解为,另外,y=0也是方程的解.4、, 为常数解:令,则,从而 ,于是求得方程参数形式的通解为.5、1解:令,则,从而 ,于是求得方程参数形式的通解为.6、解:令,则,得,所以,从而,于是求得方程参数形式的通解为,因此方程的通解为.习题2.52 解:两边同除以,得:即4解:两边同除以,得 令 则 即得到,即另外也是方程的解。6 解: 得到 即 另外也是方程的解。8. 解:令 则: 即 得到 故 即 另外也是方程的解。10 解:令 即 而故两边积分得到 因此原方程的解为,。 12. 解: 令 则 即 故方程的解为 14 解: 令 则 那么 求得: 故方程的解为 或可写 为 16 解:令 则 即方
14、程的解为18 解: 将方程变形后得 同除以得: 令 则 即原方程的解为19.X(解:方程可化为2y( 令27. 解: 令,则, , 两边积分得 即为方程的通解。另外,即也是方程的解。28. 解: 两边同除以,方程可化为: 令,则 即 ,两边积分得 即 为方程的解。29. 解: 令,则 , ,那么 即 两边积分得 即为方程的解。30. 解: 方程可化为 两边积分得 即 为方程的解。31. 解: 方程可化为 两边同除以,得 即 令,则 即 两边积分得 将代入得, 即 故 32. 解: 方程可化为 两边同加上,得 (*)再由,可知 (*)将(*)/(*)得 即 整理得 两边积分得 即 另外,也是方程
15、的解。33. 求一曲线,使其切线在纵轴上之截距等于切点的横坐标。解: 设为所求曲线上的任一点,则在点的切线在轴上的截距为: 由题意得 即 也即 两边同除以,得 即 即 为方程的解。34. 摩托艇以5米/秒的速度在静水运动,全速时停止了发动机,过了20秒钟后,艇的速度减至米/秒。确定发动机停止2分钟后艇的速度。假定水的阻力与艇的运动速度成正比例。解:,又,由此 即 其中,解之得 又时,;时,。故得 ,从而方程可化为 当时,有 米/秒即为所求的确定发动机停止2分钟后艇的速度。35. 一质量为m的质点作直线运动,从速度等于零的时刻起,有一个和时间成正比(比例系数为k1)的力作用在它上面,此质点又受到
16、介质的阻力,这阻力和速度成正比(比例系数为k2)。试求此质点的速度与时间的关系。解:由物理知识得:根据题意:故:即:(*)式为一阶非齐线性方程,根据其求解公式有又当t=0时,V=0,故c=因此,此质点的速度与时间的关系为:36. 解下列的黎卡提方程(1)解:原方程可转化为:观察得到它的一个特解为:,设它的任意一个解为,代入(*)式得到:由(*)-(*)得:变量分离得:两边同时积分:即:故原方程的解为 (2)解:原方程可化为:由观察得,它的一个特解为,设它的任意一个解为,故变量分离再两边同时积分得:即故原方程的解为(3)解:原方程可化为:由观察得到,它的一个特解为,设它的任一个解为,故,该式是一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 第三 答案 高雄
限制150内