《行程问题集锦》word版.doc
《《行程问题集锦》word版.doc》由会员分享,可在线阅读,更多相关《《行程问题集锦》word版.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、行程问题集锦1、 基本行程问题:基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。基本公式:路程速度时间;路程时间速度;路程速度时间关键问题:确定行程过程中的位置2、 简单的相遇、追及问题:相遇问题:速度和相遇时间相遇路程追击问题:追击时间路程差速度差简单的相遇与追及问题各自解题时的入手点及需要注意的地方1.相遇问题:与速度和、路程和有关 是否同时出发 是否有返回条件 是否和中点有关:判断相遇点位置 是否是多次返回:按倍数关系走。 一般条件下,入手点从和入手,但当条件与差有关时,就从差入手,再分析出时间,由此再得所需结果2.追及问题:与速度差、路程差有关 速度差
2、与路程差的本质含义 是否同时出发,是否同地出发。 方向是否有改变 环形时:慢者落快者整一圈(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。甲列车每小时行93千米,乙列车每小时行多少千米?(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(
3、2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?(5)两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。已知甲车的速度是乙车的1.5倍,求甲、乙两列火车每小时各行多少千米?(6)甲、乙两城相距68
4、0千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(7)甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?(8)A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?(9)甲、乙两列汽车同时从两地出发,相向而行。已知甲车每小时行45千米,乙车每小时行32千米,相遇时甲车比乙车多行52千米。求甲乙两地相距多少千米?(10)姐妹俩同时从家里到少年宫,路程全
5、长770米。妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇。这时妹妹走了几分钟?(2001年上海市金山区升级考试卷)(11)小明和小华从甲、乙两地同时出发,相向而行。小明步行每分钟走60米,小华骑自行车每分钟行190米,几分钟后两人在距中点650米处相遇? (2002年上海市金山区升级考试卷)(12)A、B两地相距300千米,两辆汽车同时从两地出发,相向而行。各自达到目的地后又立即返回,经过8小时后它们第二此相遇。已知甲车每小时行45去,千米,乙车每小时行多少千米?3、平均速度:平均速度=总路程总时间例题:张师傅驾驶一辆载重汽车从县城出发到省城送
6、货,到达省城后马上卸货并随即沿原路返回。他驾驶的这辆汽车去时每小时行64千米,返回时每小时行56千米,往返一趟共用去12小时(在省城卸货所用时间略去不计)。张师傅在省城和县城之间往返一趟共行了多少千米?题说 第五届小数报数学竞赛初赛第1题 答案:716.8(千米)D10022一辆汽车以每小时60千米的速度从A地开往B地,它又以每小时40千米的速度从B地返回A地,那么这辆汽车行驶的平均速度是_千米/小时题说 第六届“祖冲之杯”数学邀请赛第4题答案:48(千米/小时)D10034王师傅驾车从甲地开往乙地交货。如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地,可是当到达乙地时,他发现他从
7、甲地到乙地的速度只有每小时55千米。如果他想按时返回甲地,他应以多大的速度往回开?题说 第二届“华杯赛”复赛第6题 答案:每小时66千米4、钟面行程:两个速度单位:分针每分钟走6度,时针每分钟走0.5度时钟问题主要有3大类题型:第一类是追及问题(注意时针分针关系的时候往往有两种情况);第二类是相遇问题(时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时,可以求出路程和);第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系。5、走走停停:行程问题里走走停停的题目应该怎么做画出速度和路程的图。 要学会读图。 每一个加速减速、匀速要分清楚,这有利于你的解题思路。
8、 要注意每一个行程之间的联系。【题目】甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?【解答】这样的题有三种情况:在乙休息结束时被追上、在休息过程中被追上和在行进中被追上。很显然首先考虑在休息结束时的时间最少,如果不行再考虑在休息过程中被追上,最后考虑行进中被追上。其中在休息结束时或者休息过程中被追上的情况必须考虑是否是在休息点追上的。由此首先考虑休息80020013分钟的情况。甲就要比乙多休息3分钟,就相当于甲要追乙8008031040米,需要1040(10080)52分钟,52分钟甲行了521005200米,刚好是在
9、休息点追上的满足条件。行5200米要休息5200200125分钟。因此甲需要522577分钟第一次追上乙。【题目】在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒那么,甲追上乙需要多少秒?【解答】这是传说中的“走走停停”的行程问题。这里分三种情况讨论休息的时间,第一、如果在行进中追上,甲比乙多休息10秒,第二,如果在乙休息结束的时候追上,甲比乙多休息5秒,第三,如果在休息过程中且又没有休息结束,那么甲比乙多休息的时间,就在这510秒之间。显然我们考虑的顺序是首先看是否在结束时追上,又
10、是否在休息中追上,最后考虑在行进中追上。有了以上的分析,我们就可以来解答这个题了。我们假设在同一个地点,甲比乙晚出发的时间在200/75235/7和200/710270/7的之间,在以后的行程中,甲就要比乙少用这么多时间,由于甲行100米比乙少用100/5100/740/7秒。继续讨论,因为270/740/7不是整数,说明第一次追上不是在乙休息结束的时候追上的。因为在这个范围内有240/740/76是整数,说明在乙休息的中追上的。即甲共行了6100200800米,休息了7次,计算出时间就是800/775149又2/7秒。注:这种方法不适于休息点不同的题,具有片面性。在有些行程问题中,既有路程上
11、的前后调头,又有时间上的走走停停,同时又有速度上的前后变化。遇到此类问题,我们应分析其中的运动规律,把整个运动过程分成几段,再仔细分析每一段中的情况,然后再类推到其它各段中去。这样既可使运动关系明确、简化,又可减少复杂重复的推理及计算。例:甲、乙两名运动员在周长400米的环形跑道上进行10000米长跑比赛,两人从同一起跑线同时起跑,甲每分钟跑400米,乙每分钟跑360米,当甲比乙领先整整一圈时,两人同时加速,乙的速度比原来快 ,甲每分比原来多跑18米,并且都以这样的速度保持到终点。问:甲、乙两人谁先到达终点?停走问题这类题抓住一个关键-假设不停走,算出本来需要的时间。【例1】龟兔赛跑,全程5.
12、4千米,兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停的跑,但兔子却边跑边玩,它先跑1分,然后再玩15分,又跑2分,玩15分,再跑3分,玩15分,那么先到达终点的比后到达终点的快几分钟呢?【例2】在一条公路上,甲、乙两个地点相距600米。张明每小时行走4千米,李强每小时5千米。8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都的掉头反向而行,再过3分钟,他们又掉头相向而行,依次按照1,3,5,7,9,分钟数掉头行走,那么,张、李二人相遇时间是8点几分呢?5多人行程-这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题
13、转化为寻找两两人之间的关系。【例1】有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲于乙、丙背向而行。甲每分40米,乙每分38米,丙每分36米。出发后,甲和乙相遇后3分钟又与丙相遇。这花圃的周长是多少?【例2】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米。甲从A地,乙和丙从B出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地的距离。 【题目】在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒那么,甲追上乙需要多少秒?这里分
14、三种情况讨论休息的时间,第一、如果在行进中追上,甲比乙多休息10秒,第二,如果在乙休息结束的时候追上,甲比乙多休息5秒,第三,如果在休息过程中且又没有休息结束,那么甲比乙多休息的时间,就在这510秒之间。显然我们考虑的顺序是首先看是否在结束时追上,又是否在休息中追上,最后考虑在行进中追上。有了以上的分析,我们就可以来解答这个题了。我们假设在同一个地点,甲比乙晚出发的时间在200/75235/7和200/710270/7的之间,在以后的行程中,甲就要比乙少用这么多时间,由于甲行100米比乙少用100/5100/740/7秒。继续讨论,因为270/740/7不是整数,说明第一次追上不是在乙休息结束
15、的时候追上的。因为在这个范围内有240/740/76是整数,说明在乙休息的中追上的。即甲共行了6100200800米,休息了7次,计算出时间就是800/775149又2/7秒。正方形ABCD每边长100米,甲从A出发顺时针沿A-D-C-B-A跑步,每秒7米;乙从B出发顺时针沿B-A-D-C-B跑步,每秒6米,问:(1)他们每到A、B、C、D都要停10秒,甲何时追上乙?(2)他们每到A、B、C、D都要停1秒,甲何时追上乙?(3)他们每到A、B、C、D都要停0.5秒,甲何时追上乙?例: 快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。已知慢车从乙地到甲地用12.5小时,慢车到甲地停留
16、0.5小时后返回。快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?125 - 5 = 75 小时 慢车行AC这段路所用的时间5 :75 = 2 :3行相同路程快车与慢车的时间比则 3 :2 为相同时间内快车与慢车的速度比所以: 12.5 * (2/3)= 25/3 小时 快车到达B点所需的时间12.5 + 0.5 - (25/3 + 1)= 11/3小时 返回时快车比慢车先行的时间即先行了:(11/3)* 3 = 11 快车返回时先行的路程(25/3)* 3 = 25 AB两地的总路程(25 - 11)/(2+3)= 14/5 小时 快车先行后两车第二次相遇时间所以:
17、7.5 + 0.5 + 14/5 = 10.8小时 两车从第一次相遇到第二次相遇所用的时间或: 25/3 - 5 + 1 + 11/3 + 14/5 = 10.8小时 程问题中,遇到给出条件一个人走多久又休息多久的条件总是觉得思路很不明朗,不知各位都有哪些好方法来解此类题,下面提供两个例题:1、绕湖一周是20千米,甲、乙二人从湖边某一点同时同地出发,反向而行,甲以每小时4千米的速度每走一小时休息5分钟,乙以每小时6千米的速度每走50分钟后休息10分钟,则两人从出发到第一次相遇用了多少分钟?2、环形跑道周长是500米,甲、乙二人按顺时针方向沿环形跑道同时同地起跑,甲每分钟跑60米,乙每分钟跑50
18、米,甲、乙两人每跑200米均要停下来休息一分钟,那么甲首次追上乙需要多少分钟?当甲首次追上乙的时候,甲跑的距离肯定比乙跑的距离多500则当S/200的余数100时,甲停的次数比乙多3则甲跑的时间为T-350*T+500=60*(T-3) 得T=68S=50*68=3400 S/200的余数=0矛盾所以结果是: 77快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图: 设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5
19、=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面取单位准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶37=21(单位).从B到C再往前一个单位到D点.离A点15-114(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14(23)2.8(小时).慢车从C到A返回行驶至与快车相遇共用了7.50.52.810.8(小时).答:从第一相遇到再相遇共需10小时48分.6、接送问题例题:奥数接送问题例题1:如果
20、A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行的3倍,马车每次可以 乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进.多次往返后,当全体学生到达B地时,马车共行了多少千米?答案:10*(1+2/3*3/4*2+1/3*3/4*2+1/6*3/4*2+1/8*3/4*2)=10*47/16=235/8千米例题2:某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽
21、车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)解析:设专家从家中出发后走到M处(如图1)与小汽车相遇。由于正常接送必须从BAB,而现在接送是从BMB恰好提前10分钟;则小汽车从 MAM刚好需10分钟;于是小汽车从MA只需5分钟。这说明专家到M处遇到小汽车时再过5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了:60一555(分钟)。例题3:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48
22、千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?解析:相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9 又相遇时甲比乙多行了:48*2=96千米 所以路程是:96/(5/9-4/9)=864千米.例题4:有两个班的小学生要到少年宫参加活动,但只有一辆车接送。第一班的学生做车从学校出发的同时,第二班学生开始步行 ;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫。学生步行速度为每小时4公里, 载学生时车速每小时40公里
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 行程问题集锦 行程 问题 集锦 word
限制150内