多元函数微分习题.doc
《多元函数微分习题.doc》由会员分享,可在线阅读,更多相关《多元函数微分习题.doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五部分 多元函数微分学选择题容易题136,中等题3787,难题8899。1设有直线及平面,则直线 ( )(A) 平行于。 (B) 在上。(C) 垂直于。 (D) 与斜交。答:C 2二元函数在点处 ( )(A) 连续,偏导数存在 (B) 连续,偏导数不存在(C) 不连续,偏导数存在 (D) 不连续,偏导数不存在答:C 3设函数由方程组确定,则当时,( )(A) (B) (C) (D) 答:B 4设是一二元函数,是其定义域内的一点,则下列命题中一定正确的是( )(A) 若在点连续,则在点可导。(B) 若在点的两个偏导数都存在,则在点连续。(C) 若在点的两个偏导数都存在,则在点可微。(D) 若在
2、点可微,则在点连续。答:D 5函数在点处的梯度是( )(A) (B) (C) (D) 答:A 6函数在点处具有两个偏导数 是函数存在全 微分的( )。 (A).充分条件 (B).充要条件 (C).必要条件 (D). 既不充分也不必要 答C 7对于二元函数,下列有关偏导数与全微分关系中正确的命题是( )。 (A).偏导数不连续,则全微分必不存在 (B).偏导数连续,则全微分必存在 (C).全微分存在,则偏导数必连续 (D).全微分存在,而偏导数不一定存在 答B 8二元函数在处满足关系( )。 (A).可微(指全微分存在) 可导(指偏导数存在)连续 (B).可微可导连续 (C).可微可导或可微连续
3、,但可导不一定连续 (D).可导连续,但可导不一定可微 答C9若,则在是( ) (A).连续但不可微 (B).连续但不一定可微 (C).可微但不一定连续 (D).不一定可微也不一定连续 答D 10设函数在点处不连续,则在该点处( ) (A).必无定义 (B)极限必不存在 (C).偏导数必不存在 (D).全微分必不存在。 答D 11二元函数的几何图象一般是:( )(A) 一条曲线(B) 一个曲面(C) 一个平面区域(D) 一个空间区域答 B 12函数的定义域为( )(A) 空集(B) 圆域(C) 圆周(D) 一个点答 C13设则( )(A)(B) (C) (D) 答 A 14=( )(A) 存在
4、且等于0。(B) 存在且等于1。(C) 存在且等于(D) 不存在。15指出偏导数的正确表达( )(A)(B)(C)(D)答 C16设 (其中 ),则( ).();();();().答 17 函数在点处( ) ()无定义; ()无极限; ()有极限,但不连续; ()连续.答18 函数在点间断,则( )()函数在点处一定无定义;()函数在点处极限一定不存在;()函数在点处可能有定义,也可能有极限;()函数在点处有定义,也有极限,但极限值不等于该点的函数值.答19 设函数,由方程组确定,则( )(); (); (); (). 答20 在点处的梯度( )(); (); (); (). 答21 设函数在
5、点处可微,且,则函数在处( )()必有极值,可能是极大,也可能是极小;()可能有极值,也可能无极值;()必有极大值;()必有极小值.答22设则=( ) (A) 0 (B) 不存在(C)(D) 1 答 A23设,则=( ) (A) (B) (c) (D) 0 答 B。24设则=( )(A)(B)(C)(D)答 A25设,确定则=( )(A)(B)(C)(D)答B26已知则=( )(A)(B)(C) 1(D) 0答D 27设由方程确定,则=( )(A)(B)(C)(D)答 D 28设,则=( )(A)(B)(C)(D)答 C 29设,则=( )(A)(B)(C)(D) 答 D30下列做法正确的是(
6、 )(A) .设方程,代入,得.(B) 设方程,代入,得.(C) 求平行于平面的切平面,因为曲面法向量 , 切平面方程为.(D) 求平行于平面的切平面,因为曲面法向量 , 切平面方程为答 B 31设为平面上的点,且该点到两定点的距离平方之 和为最小,则此点的坐标为( )(A)(B)(C)(D)答 B 32若函数在点可微,则在该点( ) (A)一定存在。 (B) 一定连续。 (C) 函数沿任一方向的方向导数都存在,反之亦真。 (D) 函数不一定连续。答33在矩形域内,是(常数)的( ) (A)必要条件 (B) 充分条件 (C) 充要条件 (D)既非充分也非必要条件答C34若函数均具有一阶连续偏导
7、数,则( )(A) ( B) (C) (D) 答B35设函数具有二阶连续导数,则函数满足关系( ) (A) (B) (C) (D) 答 D36二元函数的极大值点是 (A) (1,1) (B) (0,1) (C) (1,0) (D) (0,0)答D 37 直线与之间的关系是( )(A) 重合 (B) 平行 (C) 相交 (D) 异面答:B 38 曲面的与平面平行的切平面方程是( )(A) (B) (C) (D) 答:D 39 下列结论中错误的是( )(A) (B) (C) 。 (D) 不存在。答:B 40已知二阶连续可导,记,则下列结论中正确的是( )(A) 。 (B) (C)。 (D) 答:D
8、 41设函数,又,则下列结论中正确的是( )(A) 。 (B) 。 (C) 。 (D) 。答:D 42设则在原点处( ) (A).偏导数不存在,也不连续 (B).偏导数存在但不连续 (C).偏导数存在且可微 (D).偏导数不存在也不可微 答:B 43设则( ) (A). 0 (B). 1 (C). 2 (D).不存在 答:B 44设则=( ) (A). 1 (B). (C). 2 (D). 0 答:B 45设则( ) (A). (B). (C). (D). 答:B 46设,则( ) (A). 3/2 (B). 1/2 (C). (D).0 答:B 47设方程确定隐含数(其中可微),且 ,则(
9、) (A). 1/7 (B). (C). (D). 答:B48曲面上平行于平面的切平面方程是( ) (A). (B). (C). (D). 答:A 49二元实值函数在区域上的最小值为 ( )(A). 0 (B). (C). (D). 答:C50平面是曲面在点(1/2,1/2,1/2)处的切平面,则 的值是( )。 (A).4/5 (B). 5/4 (C)2 (D).1/2 答:C 51已知曲面,在其上任意点处的切平面方程 为,则切平面在三坐轴走上的 截距之和为( ) (A) (B). (C). (D). 答:C 52指出与不相同的函数( )(A)(B) (C) (D)答 : B 53指出错误的
10、结论:( )(A) 按等价无穷小的替换原则,有(B) 按无穷大量与无穷小量的关系,有,因当时, 。(C) 按变量代换的方法,有,此处。(D) 按根式有理化方法,有。答 : B 54以下各点都是想说明不存在的,试问其理由是否正确?( )(A) 对,理由是时函数无定义。(B) 对理由是令或将得到不同的极限值。(C) 对理由是令,即知极限不存在。(D) 对理由是当或时极限已经不存在,故二重极限更不可能存在了。答 : B 55 在具备可微性的条件下,等式 的成立,对还有什麽限制?( )(A) 没什麽限制(除作分母时不为 0)。(B) 只能是自变量。(C) 是自变量或某自变量的一元函数。(D) 是自变量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 函数 微分 习题
限制150内