数理方程第二版课后习题答案.doc
《数理方程第二版课后习题答案.doc》由会员分享,可在线阅读,更多相关《数理方程第二版课后习题答案.doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章 曲线论1 向量函数1. 证明本节命题3、命题5中未加证明的结论。略2. 求证常向量的微商等于零向量。证:设,为常向量,因为所以 。 证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数 ,和在区间上可导。所以,根据数量函数的Lagrange中值定理,有其中,介于与之间。从而上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有,从而,于是。 证毕5. 证明具有固定方向的充要条件是。证:必要性:设具有固定方向,则可表示为,其中
2、为某个数量函数,为单位常向量,于是。充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,即具有固定方向。 证毕6. 证明平行于固定平面的充要条件是。证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得 和 ,从而,和共面,因此 。充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由 可知,和共面,于是 ,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方
3、向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。 证毕2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。解:,点对应于参数,于是当时,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。解:,当时,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。解:5. 求抛物线对应于的一段的弧长。解:6. 求星形线,的全弧长。解:7. 求旋轮线,对应于一段的弧长。解:8. 求圆柱螺线从它与平面的交点到任意点的弧长。解:
4、圆柱螺线与平面的交点为,交点对应的参数为,而, 9. 求曲线,在平面与平面之间的弧长。解:取为曲线参数,曲线的向量参数方程为:平面对应于参数,平面对应于参数,10. 将圆柱螺线化为自然参数表示。解:,因为自然参数11. 求极坐标方程给定的曲线的弧长表达式。解:极坐标方程给定的曲线的方程可化为向量参数形式:3 空间曲线1. 求圆柱螺线在任意点的密切平面的方程。解:密切平面的方程为即 2. 求曲线在原点的密切平面、法平面、从切平面、切线、主法线、副法线的方程。解:原点对应于参数 ,于是在处,密切平面的方程为副法线的方程为法平面的方程为:切线的方程为从切平面的方程为主法线的方程为3. 证明圆柱螺线的
5、主法线和轴垂直相交。证:一方面,主法线的方程为另一方面,过圆柱螺线上任意一点作平面与轴垂直,的方程为,与轴的交点为,过与的直线显然与轴垂直相交,而其方程为这正是主法线的方程,故主法线和轴垂直相交。 证毕4在曲线的副法线的正向取单位长,求其端点组成的新曲线的密切平面。解:令,则曲线的方程可表示为:设的副法线向量为,则有根据题意,新曲线的方程可表示为将代入上式,整理后,得于是新曲线的密切平面为:即:5. 证明球面曲线的法平面通过球的中心。证:设曲线为球心在原点,半径为的球面上的曲线,其中为自然参数。曲线(C)上任意一点P(P点的向径为)处的基本向量为,。则有上式两边关于求导,得设为法平面上的点的向
6、径,则曲线(C)上任意一点P处的法平面的向量方程为根据(2)式 满足方程(3),故法平面过原点。 证毕6. 证明过原点平行于圆柱螺线的副法线的直线的轨迹是锥面。证:设过原点且与平行的直线上的点为,则直线的方程为化为参数方程,得则有这说明直线上的点都在锥面上。 证毕7. 求下列曲线的曲率和挠率。 , 解: 对于曲线(1)对于曲线(2)8. 给定曲线,求(1)基本单位向量,;(2)曲率和挠率;(3)验证伏雷内公式。解: 对于给定曲线,有其中,根据(5)(6)(8)式可得,根据(6)(9)(10)式,可得,又根据(6)式,得另一方面,根据(4)(7)(8)(10)式,可得从而,。9. 证明:如果曲线
7、的所有切线都经过一个定点,则此曲线是直线。证1:设曲线(C)的向量参数方程为: ,其中为自然参数。(C)上任意一点P(P点的向径为)处的基本向量为,。因为(C)在P点处的切线都经过一定点Q(Q点的向径设为),所以与共线,进而有(1) 上式两端关于求导并利用Frenet公式,得:(2) (2)式中的为(C)在P点处的曲率。又(2)式中,这是因为如果,则同时与和共线,但这是不可能的,因为和是相互正交的单位向量。从而根据(2)式有,即(C)是直线。 证毕证2:设曲线的方程为,因为曲线上任一点的切线经过一定点,则与共线,但,于是与共线,从而=0,由此可知具有固定的方向,即与一个常向量平行,于是=,或,
8、这说明曲线上的点都在以为方向向量,过点的直线上,所以曲线为直线。 证毕10. 证明:如果曲线的所有密切平面都经过一个定点,则此曲线是平面曲线。证:设曲线(C)的向量参数方程为: ,其中为自然参数。曲线(C)上任意一点P(P点的向径为)处的基本向量为,。因为我们只研究不含逗留点的曲线(参见教科书P.31的脚注),即 ,而即(C)上任何点的曲率。设(C)在P点处的密切平面都经过一个定点Q (Q点的向径设为),则为(C)在P点处的密切平面上的一个向量,从而有(1) (1) 式两端关于求导并利用Frenet公式,得:(2) (2)式中的为(C)在P点处的挠率。由(2)式可知, 或者但,因为如果 结合(
9、1)式,可知与共线,于是 (3) (3)式两端关于求导并利用Frenet公式,得:(4) (4)式中的为(C)在P点处的曲率。因为,所以 ,结合(3)知同时与和共线,但这是不可能的,因为和是相互正交的单位向量。这个矛盾说明,于是由(2)式可知,只能,曲线(C) 是平面曲线。 证毕11. 证明:如果曲线的所有法平面都包含常向量,则此曲线是平面曲线。证1: 设曲线(C)的向量参数方程为: ,其中为自然参数。(C)上任意一点P(P点的向径为)处的基本向量为,。因为(C)在P点处的法平面都包含常向量,则有(1) 注意到 ,(1)式两端关于从到求积分,得:(2) (2)式说明曲线(C)在以常向量为法向量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数理 方程 第二 课后 习题 答案
限制150内