数学模型中的因子分析法.ppt
《数学模型中的因子分析法.ppt》由会员分享,可在线阅读,更多相关《数学模型中的因子分析法.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一篇 主成分分析在实际经济工作中,我们经常碰到多变量或多指标问题,例如,企业经济效益的评价,地区经济发展情况比较。由于变量或指标较多,且变量或指标之间存在一定的相关性,人们自然希望用较少的变量或指标代替原来较多的变量或指标,而且可尽量保存原有信息,利用这种降维的思想产生了主成分分析方法主成分分析法:就是设法将原来的具有一定相关性的变量或者指标,重新组成一组新的相互无关的少数几个综合变量或指标,以此代替原来的变量或指标。简单的说就是降维。应用:综合评价(系统评估)例:对我国上市公司的经济效益进行综合评判。主成分分析步骤:1.将数据标准化,标准化后的数据矩阵仍记X阵。2.求矩阵X的相关系数阵 3
2、.求R的全部特征根i及相应的特征向量()。4.根据前k个主分量累计贡献率大小(),确定主成分(因子)个数。根据具体指标内容和指标变量系数大小解释主成分含义。用每个主成分的贡献率作权数,给出多指标综合评价值。Eigenvalues of the Correlation Matrix Eigenvalue Difference Proportion Cumulative 1 4.04767016 3.03734802 0.6746 Obs Prin1 Prin2 Prin3 Prin4 Prin5 Prin6用于系统评估的方法:关键问题是如何科学的客观地将一个多指标问题转化为单指标问题第一种方法:
3、用第一主成分得分y=F1.必须要求:所有系数均为正 第二种方法:将主成分F1,F2,Fm进行线性组合,系数为方差贡献率 yi di yi zhu cheng fen pai xv 13:30 Saturday,July 17,1999 35 name Prin1 x1 x2 x3 x4 x5 x6 laigang -2.11628 2.17 5.70 -2.11 -2.57 1.34 3.21 cengxin -1.63568 3.63 5.79 -1.09 -1.29 1.17 4.71 xinbai -1.45693 4.27 5.35 -0.71 -0.83 1.38 5.68 shui
4、yun -1.19410 3.74 6.47 0.33 0.39 0.98 5.24 guangsha -0.94513 4.65 7.80 0.53 0.65 1.18 5.82 chanhong -0.88090 5.65 10.63 -0.92 -1.19 1.08 8.84 yanzhong -0.82981 8.97 1.43 1.73 1.18 1.10 5.22 Qinghua -0.38118 5.41 8.05 2.09 2.43 1.30 7.51 guoji -0.29401 8.07 8.69 0.73 0.89 10.75 10.16 zonghang 0.08041
5、 9.66 6.27 6.69 2.63 3.05 1.64 xinya 0.22635 6.31 9.97 3.63 4.59 1.29 7.21 pudong 0.46501 8.18 8.20 3.41 4.01 1.75 12.13 beida 0.57795 7.21 8.54 4.51 5.26 1.43 10.44 hualian 0.69219 8.38 9.52 4.27 5.07 1.70 10.49 qingshan 0.95195 14.47 5.97 7.62 1.37 1.20 10.56 xiaxin 6.74015 25.95 33.52 6.96 15.38
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学模型 中的 因子分析
限制150内