《材料力学压杆稳定》PPT课件.ppt
《《材料力学压杆稳定》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《材料力学压杆稳定》PPT课件.ppt(59页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、材料力学材料力学 第九章第九章 压杆稳定压杆稳定9-1 压杆稳定的概念压杆稳定的概念9-2 两端铰支细长杆的临界压力两端铰支细长杆的临界压力9-3 其他支座条件下细长杆的其他支座条件下细长杆的临界压力临界压力9-4 欧拉公式的适用范围欧拉公式的适用范围 经验公式经验公式9-5 压杆的稳定校核压杆的稳定校核9-6 提高压杆稳定的措施提高压杆稳定的措施9-7 纵横弯曲的概念纵横弯曲的概念材料力学材料力学 第九章第九章 压杆稳定压杆稳定9-1 压杆稳定的概念压杆稳定的概念材料力学材料力学 第九章第九章 压杆稳定压杆稳定例:一长为例:一长为300mm的钢板尺,横截面尺寸为的钢板尺,横截面尺寸为 20m
2、m 1mm。钢的许用应力为。钢的许用应力为=196MPa。按强度条件计。按强度条件计算得算得钢板尺所能承受的轴向压力为钢板尺所能承受的轴向压力为P=A =3.92 KN实际上,当压力不到实际上,当压力不到 40N 时,钢尺就被压弯。可见,时,钢尺就被压弯。可见,钢尺的承载能力并不取决轴向压缩的抗压刚度,而钢尺的承载能力并不取决轴向压缩的抗压刚度,而是与是与 受压时变弯受压时变弯 有关。有关。材料力学材料力学 第九章第九章 压杆稳定压杆稳定一、稳定平衡与不稳定平衡的概念一、稳定平衡与不稳定平衡的概念 当当 F小于某一临界值小于某一临界值Fcr,撤去横向力后,杆,撤去横向力后,杆的轴线将恢复其原来
3、的直线平衡形态,压杆在直的轴线将恢复其原来的直线平衡形态,压杆在直线形态下的平衡是线形态下的平衡是稳定平衡稳定平衡。材料力学材料力学 第九章第九章 压杆稳定压杆稳定FF(a)Q(b)当当 F增大到一定的临界值增大到一定的临界值Fcr,撤去横向力后,杆的,撤去横向力后,杆的轴线将保持弯曲的平衡形轴线将保持弯曲的平衡形态,而不再恢复其原来的态,而不再恢复其原来的直线平衡形态,直线平衡形态,压杆在原来直线形态下的压杆在原来直线形态下的平衡是平衡是 不稳定平衡不稳定平衡不稳定平衡不稳定平衡。材料力学材料力学 第九章第九章 压杆稳定压杆稳定材料力学材料力学 第九章第九章 压杆稳定压杆稳定材料力学材料力学
4、 第九章第九章 压杆稳定压杆稳定两端球形绞支,长为两端球形绞支,长为 L的的等截面等截面细长细长 中心受压直杆。中心受压直杆。9-2两端铰支细长压杆的临界压力两端铰支细长压杆的临界压力材料力学材料力学 第九章第九章 压杆稳定压杆稳定vcrFx2llmmyByx材料力学材料力学 第九章第九章 压杆稳定压杆稳定压杆任一压杆任一 x 截面沿截面沿 y 方向的方向的位移为位移为 y=f(x)该截面的弯矩为该截面的弯矩为杆的挠曲线近似微分方程为杆的挠曲线近似微分方程为mmyByx材料力学材料力学 第九章第九章 压杆稳定压杆稳定其中其中 I 为压杆横截面的为压杆横截面的最小形心主惯性矩。最小形心主惯性矩。
5、令令则有二阶常系数线性微分方程则有二阶常系数线性微分方程mmyByx材料力学材料力学 第九章第九章 压杆稳定压杆稳定其通解为其通解为A,B,k 三个待定常数由该挠三个待定常数由该挠曲线的三个边界条件确定。曲线的三个边界条件确定。材料力学材料力学 第九章第九章 压杆稳定压杆稳定边界条件:边界条件:得得B=0材料力学材料力学 第九章第九章 压杆稳定压杆稳定B=0 ,边界条件:边界条件:材料力学材料力学 第九章第九章 压杆稳定压杆稳定要想压杆在微弯状态下要想压杆在微弯状态下平衡只有平衡只有要想压杆在微弯状态下要想压杆在微弯状态下平衡只有平衡只有材料力学材料力学 第九章第九章 压杆稳定压杆稳定其最小解
6、为其最小解为 n=1 的解的解材料力学材料力学 第九章第九章 压杆稳定压杆稳定即得即得这就是两端绞支等截面细长中心这就是两端绞支等截面细长中心受压直杆临界力的计算公式受压直杆临界力的计算公式(欧拉公式)(欧拉公式)材料力学材料力学 第九章第九章 压杆稳定压杆稳定材料力学材料力学 第九章第九章 压杆稳定压杆稳定1两端绞支两端绞支2一端固定另端绞支一端固定另端绞支C为拐点为拐点 l crPl7.09-3其它支座条件下细长压杆的临界压力其它支座条件下细长压杆的临界压力材料力学材料力学 第九章第九章 压杆稳定压杆稳定 l crP3两端固定两端固定C,D为为拐点拐点D2l材料力学材料力学 第九章第九章
7、压杆稳定压杆稳定4一端固定另端自由一端固定另端自由crPll材料力学材料力学 第九章第九章 压杆稳定压杆稳定表表7-1 各种支承约束条件下等截面细长压杆各种支承约束条件下等截面细长压杆 临界力的欧拉公式临界力的欧拉公式 两端绞支两端绞支一端固定另绞支端一端固定另绞支端两端固定两端固定一端固定另端自由一端固定另端自由支承情况支承情况临界力的欧拉公式临界力的欧拉公式长度系数长度系数 =1 =0.7 =0.5 =2材料力学材料力学 第九章第九章 压杆稳定压杆稳定欧拉公式欧拉公式 的统一形式的统一形式m为压杆的为压杆的长度长度系数系数;l 为相当长度。为相当长度。讨论:讨论:(1)相当长度)相当长度
8、l 的物理意义的物理意义1压杆失稳时,挠曲线上两拐点间的长度就是压杆的压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当相当长度长度 l。2 l是各种支承条件下,细长压杆是各种支承条件下,细长压杆失稳时,挠曲线中失稳时,挠曲线中相当于相当于半波正半波正弦弦曲线的一段曲线的一段长度长度材料力学材料力学 第九章第九章 压杆稳定压杆稳定 为长度系数为长度系数 l 为相当长度为相当长度(2)横截面对某一形心主惯性轴的惯性矩)横截面对某一形心主惯性轴的惯性矩 I1若杆端在各个方向的约束情况相同(球形绞等),则若杆端在各个方向的约束情况相同(球形绞等),则 I应取最小的形心主惯性矩。应取最小的形心主惯性矩。
9、材料力学材料力学 第九章第九章 压杆稳定压杆稳定2若杆端在各个方向的约束情况不同(柱形绞),应分别若杆端在各个方向的约束情况不同(柱形绞),应分别计算杆在不同方向失稳时的临界力。计算杆在不同方向失稳时的临界力。I 为其相应的对为其相应的对中性轴的惯性矩。中性轴的惯性矩。材料力学材料力学 第九章第九章 压杆稳定压杆稳定例例9-3-1:图示各杆材料和截面均相同,试问哪一根杆能承受图示各杆材料和截面均相同,试问哪一根杆能承受的压力最大,的压力最大,哪一根的最小?哪一根的最小?aP(1)P1.3a(2)P(3)1.6a因为因为又又可知可知(1)杆承受的压力最小,最先失稳;)杆承受的压力最小,最先失稳;
10、(3)杆承受的压力最大,最稳定。)杆承受的压力最大,最稳定。材料力学材料力学 第九章第九章 压杆稳定压杆稳定F aAB a2c解解:故取故取例例9-3-2:已知:图示压杆已知:图示压杆EI,且杆在且杆在B支承处不能转动支承处不能转动 求:临界压力求:临界压力材料力学材料力学 第九章第九章 压杆稳定压杆稳定例例9-3-3:由由A3钢加工成的工字型截面杆,两端为柱形绞。在钢加工成的工字型截面杆,两端为柱形绞。在xy平面内失稳时,杆端约束情况接近于两端绞支,平面内失稳时,杆端约束情况接近于两端绞支,z=1,长长度为度为 l1。在。在xz平面内失稳时,杆端约束情况接近于两端固定平面内失稳时,杆端约束情
11、况接近于两端固定 y=0.6,长度为,长度为 l2 。求。求 Fcr。zy22126624材料力学材料力学 第九章第九章 压杆稳定压杆稳定zy22126624解:解:在在xy平面内失稳时,平面内失稳时,z为中性轴为中性轴材料力学材料力学 第九章第九章 压杆稳定压杆稳定在在xz平面内失稳时,平面内失稳时,y为中性轴为中性轴zy22126624材料力学材料力学 第九章第九章 压杆稳定压杆稳定一、欧拉公式的应用范围一、欧拉公式的应用范围(1)压杆的临界应力公式压杆的临界应力公式(临界应力欧拉公式)(临界应力欧拉公式)压杆受临界力压杆受临界力Fcr作用而仍在直线平衡形态下维持不稳定的平衡作用而仍在直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料力学压杆稳定 材料力学 稳定 PPT 课件
限制150内