高中数学椭圆经典例题详解2.pdf
《高中数学椭圆经典例题详解2.pdf》由会员分享,可在线阅读,更多相关《高中数学椭圆经典例题详解2.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、椭圆标准方程典型例题例 1 已知椭圆06322mymx的一个焦点为(0,2)求m的值 分析: 把椭圆的方程化为标准方程,由2c,根据关系222cba可求出m的值解: 方程变形为12622myx因为焦点在y轴上,所以62m,解得3m又2c,所以2262m,5m适合故5m例 2 已知椭圆的中心在原点,且经过点03,P,ba3,求椭圆的标准方程分析: 因椭圆的中心在原点,故其标准方程有两种情况根据题设条件,运用待定系数法,求出参数a和b(或2a和2b)的值,即可求得椭圆的标准方程解: 当焦点在x轴上时,设其方程为012222babyax由椭圆过点03 ,P,知10922ba又ba3,代入得12b,9
2、2a,故椭圆的方程为1922yx当焦点在y轴上时,设其方程为012222babxay由椭圆过点03 ,P,知10922ba又ba3,联立解得812a,92b,故椭圆的方程为198122xy例 3 ABC的底边16BC,AC和AB两边上中线长之和为30,求此三角形重心G的轨迹和顶点A的轨迹分析:(1)由已知可得20GBGC,再利用椭圆定义求解(2)由G的轨迹方程G、A坐标的关系,利用代入法求A的轨迹方程解:(1) 以BC所在的直线为x轴,BC中点为原点建立直角坐标系设G点坐标为yx, 由20GBGC,知G点的轨迹是以B、C为焦点的椭圆,且除去轴上两点因10a,8c,有6b,故其方程为013610
3、022yyx(2)设yxA,yxG,则013610022yyx由题意有33yyxx,代入,得A的轨迹方程为0132490022yyx,其轨迹是椭圆(除去x轴上两点)例 4 已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为354和352,过P点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程解: 设两焦点为1F、2F,且3541PF,3522PF从椭圆定义知52221PFPFa即5a从21PFPF知2PF垂直焦点所在的对称轴,所以在12FPFRt中,21sin1221PFPFFPF,可求出621FPF,3526cos21PFc,从而310222cab所求椭圆方程为1103522
4、yx或1510322yx例 5 已知椭圆方程012222babyax,长轴端点为1A,2A,焦点为1F,2F,P是椭圆上一点,21PAA,21PFF求:21PFF的面积(用a、b、表示) 分析: 求面积要结合余弦定理及定义求角的两邻边,从而利用CabSsin21求面积解: 如图,设yxP,由椭圆的对称性,不妨设P在第一象限由余弦定理知:221FF2221PFPF12PF224coscPF由椭圆定义知:aPFPF221,则2得cos12221bPFPF故sin212121PFPFSPFFsincos12212b2tan2b例 6 已知动圆P过定点03,A, 且在定圆64322yxB:的内部与其相
5、内切,求动圆圆心P的轨迹方程分析: 关键是根据题意,列出点P 满足的关系式解: 如图所示,设动圆P和定圆B内切于点M动点P到两定点,即定点03,A和定圆圆心03 ,B距离之和恰好等于定圆半径,即8BMPBPMPBPA点P的轨迹是以A,B为两焦点,半长轴为4,半短轴长为73422b的椭圆的方程:171622yx说明: 本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法例 7 已知椭圆1222yx,(1)求过点2121,P且被P平分的弦所在直线的方程;(2)求斜率为2 的平行弦的中点轨迹方程;(3)过12,A引椭圆的割线,求截得的弦的中点的
6、轨迹方程;(4)椭圆上有两点P、Q,O为原点,且有直线OP、OQ斜率满足21OQOPkk,求线段PQ中点M的轨迹方程分析: 此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法解: 设弦两端点分别为11yxM,22yxN,线段MN的中点yxR,则,yyyxxxyxyx222222212122222121得0221212121yyyyxxxx由题意知21xx,则上式两端同除以21xx,有0221212121xxyyyyxx,将代入得022121xxyyyx(1)将21x,21y代入,得212121xxyy,故所求直线方程为:0342yx 将代入椭圆方程2222yx得041662yy,041643
7、6符合题意,0342yx为所求(2)将22121xxyy代入得所求轨迹方程为:04yx (椭圆内部分)(3)将212121xyxxyy代入得所求轨迹方程为:022222yxyx (椭圆内部分)(4)由得:2222212221yyxx,将平方并整理得212222124xxxxx,212222124yyyyy,将代入得:224424212212yyyxxx,再将212121xxyy代入式得:221242212212xxyxxx,即12122yx此即为所求轨迹方程当然,此题除了设弦端坐标的方法,还可用其它方法解决例 8 已知椭圆1422yx及直线mxy(1)当m为何值时,直线与椭圆有公共点?(2)若
8、直线被椭圆截得的弦长为5102,求直线的方程解: (1)把直线方程mxy代入椭圆方程1422yx得1422mxx,即012522mmxx020161542222mmm,解得2525m(2)设直线与椭圆的两个交点的横坐标为1x,2x,由( 1)得5221mxx,51221mxx根据弦长公式得:51025145211222mm解得0m方程为xy说明: 处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程例 9 以椭圆131
9、222yx的焦点为焦点,过直线09yxl:上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程分析: 椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决解: 如图所示,椭圆131222yx的焦点为031,F,032,F点1F关于直线09yxl:的对称点F的坐标为( 9,6) ,直线2FF的方程为032yx解方程组09032yxyx得交点M的坐标为( 5,4) 此时21MFMF最小所求椭圆的长轴:562221FFMFMFa,53a,又3c,3635322222cab因此,所求椭圆
10、的方程为1364522yx例10已知方程13522kykx表示椭圆,求k的取值范围 解: 由,35,03,05kkkk得53k,且4k满足条件的k的取值范围是53k,且4k说明: 本题易出现如下错解:由, 03, 05kk得53k,故k的取值范围是53k出错的原因是没有注意椭圆的标准方程中0ba这个条件,当ba时,并不表示椭圆例11已知1cossin22yx)0(表示焦点在y轴上的椭圆,求的取值范围分析: 依据已知条件确定的三角函数的大小关系再根据三角函数的单调性,求出的取值范围解: 方程可化为1cos1sin122yx因为焦点在y轴上,所以0sin1cos1因此0sin且1tan从而)43,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 椭圆 经典 例题 详解
限制150内