基于~PLC的矿井提升机控制系统设计.doc
《基于~PLC的矿井提升机控制系统设计.doc》由会员分享,可在线阅读,更多相关《基于~PLC的矿井提升机控制系统设计.doc(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 前言1.1 提升机的发展过程及现状向矿井提升机是铁矿安全生产的关键设备之一,其作用是提升矿粉、升降人员和下放物料等,在整个铁矿生产中占有十分重要的地位。矿井提升机安全、可靠、高效、准确地运行集中体现在其电气控制系统中,电控系统性能的优劣直接影响全矿的安全生产及矿工生命的安全。现代矿井提升机的发展与现代电力传动及其控制技术的发展密切相关。根据受控电动机类型的不同,矿井提升机可分为直流驱动提升机和交流驱动提升机两大类。由于交流电动机有结构简单、紧凑、坚固、容量大、价格低廉、应用场合广泛和直接使用交流三相电源等优点,因而交流驱动提升机得到了广泛的应用。在 20 世纪 70 年代前,矿井提升机大多
2、采用交流驱动系统,但是由于其调速能力较差,很难适用于调速性能要求较高的场合。直流电动机具有良好的启、制动性能,可在大范围内平滑调速,调速性能指标远优于交流电动机,因此在 20 世纪 70 年代后,随着大功率可控硅的使用、电子控制技术和装置的发展,直流驱动提升机逐渐在大中型铁矿中占据了主导地位。 随着电力电子器件、微电子控制技术和交流调速控制理论的发展,交流驱动逐渐获得了与直流驱动相同的控制特性,并在高性能交流驱动应用中获得了根本性的突破,成为大容量提升机的首选方案。目前国内铁矿企业,井下提升机大多采用交流绕线式异步电动机转子串电阻的调速方案。提升机电控系统经历了由继电器控制、分离元件控制、模拟
3、电路控制到微电子(计算机) 控制的发展历程,目前数字控制系统已广泛应用于提升机控制系统中。采用数字控制技术后,提升机电控系统具有结构简单、控制精度高、系统功能开发简单等优点;特别是其具有智能化的信息采集、故障诊断和在线检测等功能,极大地提高了系统的可靠性,缩短了查找和排除故障的时间,降低了维护成本。1.2 主要存在的问题虽然交流提升机在调速性能上获得了根本性的突破,成为大容量提升机的首选方案,但是由交流电动机的基本原理可知,由定子传入转子的电磁功率 Pm 可分为两部分:一部分是驱动负载的有效功率 P(1-s)Pm;另一部分是转差功率 PsPm,与转差率 s 成正比。根据转差功率的大小及消耗情况
4、,交流调速系统可分为如下三类:(1)转差功率消耗型调速系统:全部转差功率都被转换成热能而消耗掉。这类调速方式有定子调压调速、电磁离合器调速、绕线式异步电动机转子串电阻调速等。这类调速系统是以增加转差功率的消耗来换取转速降低的,转速越低,效率越低。(2)转差功率回馈型调速系统:少部分转差功率被消耗掉,大部分通过变流装置回馈电网或转化为机械能予以利用。绕线式异步电动机串级调速就属这类。转速越低,回馈功率就越多。但这类调速方式用于矿井提升机的较少。(3)转差功率不变型调速系统:这类系统中,无论转速高低,所消耗的转差功率都基本不变。变级调速和变频调速即属于这类调速系统。无论采用哪种调速方案,转差功率调
5、速系统中转子消耗是不可避免的,于是造成了能源的浪费。特别是目前中小型矿井提升机广泛采用的绕线式异步电动机转子串电阻调速方式,属于转差功率消耗型调速系统,虽在负力提升情况下,可通过一定装置来实现能量的回馈,但效率依然很低。1.3 系统设计方案选择可编程控制系统(Programmable Logic Controller)是一种专门为在工业环境下应用而设计的数字运算操作电子系统。它采用一种可编程的存储器,在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,通过数字式或模拟式的输入输出来控制各种类型的机械设备或生产过程,使高可靠性的数字控制系统在较低成本价格上得以实现,越来越受到广
6、大用户的青睐,成为当今自动化电气控制的主流。液粘调速离合器是根据流体力学中关于液体粘性定义及牛顿内摩擦定律理论而研制成功的新型传动装置。它可以实现平滑的无级调速,摩擦副在分离状态下使工作机起动,起动电流也大大降低,因而避免了电阻投切造成的能源浪费,同时大惯量工作机缓慢加速,可以防止过载,并且调速反应灵敏,转速控制精度高,能够实现手动控制和远程控制。在目前国内铁矿企业生产条件急需改善、设备急需更新的情况下,将可编程控制器用作提升机控制系统,调速装置采用液粘调速离合器,将使提升机在运行特性、调速范围、节电效果等各项经济技术指标均明显提高。本系统具体设计方案是采用光电编码器采样提升机滚筒的转速信号,
7、电流互感器在电动机定子侧采样电流信号,经过可编程控制器的 A/D, D/A 模块转换,构成转速、电流负反馈控制。利用可编程控制器的内置PID 模块构成转速、电流 PI 调节器,然后通过模拟量输出模块来控制液粘调速离合器电液比例溢流阀,从而达到控制提升机调速的目的。该系统研制成功后,可解决旧系统体积大、维护困难、效率低等一系列问题。同时采用笼型电机拖动,将使系统静特性明显变硬,调速范围也将显著加宽,并且节电效果可达 30%左右,可成为井下提升机更新换代的理想设备。2 系统总体方案设计2.1 系统设计要求2.1.1 系统控制要求(1)矿井提升机是整个铁矿安全生产的关键,其安全可靠性直接关系到全矿的
8、生产和矿工的生命安全。由于铁矿井下生产环境恶劣,运行情况复杂,各种操作频繁,因此对提升机电控系统来说,除了能够满足各种复杂的控制要求外,更重要的是其可靠性和安全保障。(2)要求具有很好的调速性能,能够精确地完成井下提升的整个运行过程。(3)可以重载起动,有一定的过载能力。(4)工作方式转换容易,易于实现自动化。(5)技术先进,维护简单、方便,在保证安全可靠运行前提下,控制线路简洁明了,便于维修和排除故障。(6)尽量降低投资成本,减少运行费用,提高节电效果和经济效益。 2.1.2 系统控制速度图矿井提升机的工作过程一般经历加速、等速、减速三个运行阶段。本系统设计中采用井底初加速、等速,井筒主加速
9、、等速和井口减速运行等阶段。系统速度控制如图 2-1 所示。图 2-1 提升速度图及循环时间计算表 开始时,在井口平车场空车线上的空车串,由井口推车器以 a1加速至 V0=1.Om/s 低速,向下推进。同时,井底的重车串上提,当全部重车串进入井筒后,提升机以 a2加速到最大提升速度 Vm,并等速运行至井口,在空车串运行到井底时,提升机以 a3减速,使之由 Vm减至 V0,进入井底车场时,减速停车。这时,在井口平车场内的重车串借惯性继续前进,当行至摘挂钩位置时,摘钩并挂空车。同时井下也摘掉空车并挂上重车,然后打开井口空车线上的阻车器,进入下一个提升循环。如图 2-1 所示,提升机在各运行阶段的参
10、数预置如下,关于时间及距离的设置及计算在脉冲单元的计算中再详加说明。a.系统最大提升速度 Vm=5.Om/s;b.井下平车场平均速度 V0=1.0m/s;c.井下平车场加、减速度 a1=a4=0.3m/s2;d.井筒中主加、减速度 a2=a3=0.5m/s2;2.2 系统硬件设计 矿井提升机硬件结构主要包括控制系统、调速装置、放大驱动系统、换向回路、安全回路等部分,本系统硬件设计构成如图 2-2 所示。控制操作台 井底装载 井口卸载 检测传感器 报警显示PLC 控 制 系 统光电编码器 放大驱动 闸控回路 换向回路 安全回路提升机滚筒 液粘装置图 2-2 系统硬件组成采用 PLC 作主控制系统
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 PLC 矿井 提升 控制系统 设计
限制150内