小学数学思想方法的梳理(五).doc
《小学数学思想方法的梳理(五).doc》由会员分享,可在线阅读,更多相关《小学数学思想方法的梳理(五).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小学数学思想方法的梳理(五)课程教材研究所 王永春五、方程和函数思想1方程和函数思想的概念。方程和函数是初等数学代数领域的主要内容,也是解决实际问题的重要工具,它们都可以用来描述现实世界的各种数量关系,而且它们之间有着密切的联系,因此,本文将二者放在一起进行讨论。(1)方程思想。含有未知数的等式叫方程。判断一个式子是不是方程,只需要同时满足两个条件:一个是含有未知数,另一个是必须是等式。如有些小学老师经常有疑问的判断题:=0 和=1是不是方程?根据方程的定义,他们满足方程的条件,都是方程。方程按照未知数的个数和未知数的最高次数,可以分为一元一次方程、一元二次方程、二元一次方程、三元一次方程等等
2、,这些都是初等数学代数领域中最基本的内容。方程思想的核心是将问题中的未知量用数字以外的数学符号(常用、y等字母)表示,根据相关数量之间的相等关系构建方程模型。方程思想体现了已知与未知的对立统一。(2)函数思想。设集合、是两个非空的数集,如果按照某种确定的对应关系,如果对于集合中的任意一个数,在集合中都有唯一确定的数y和它对应,那么就称y是的函数,记作y()。其中叫做自变量,的取值范围叫做函数的定义域;y叫做函数或因变量,与相对应的y的值叫做函数值,y的取值范围叫做值域。以上函数的定义是从初等数学的角度出发的,自变量只有一个,与之对应的函数值也是唯一的。这样的函数研究的是两个变量之间的对应关系,
3、一个变量的取值发生了变化,另一个变量的取值也相应发生变化,中学里学习的正比例函数、一次函数、二次函数、幂函数、指数函数、对数函数和三角函数都是这类函数。实际上现实生活中还有很多情况是一个变量会随着几个变量的变化而相应地变化,这样的函数是多元函数。虽然在中小学里不学习多元函数,但实际上它是存在的,如圆柱的体积与底面半径r和圆柱的高的关系:rh。半径和高有一对取值,体积就会相应地有一个取值;也就是说,体积随着半径和高的变化而变化。函数思想的核心是事物的变量之间有一种依存关系,因变量随着自变量的变化而变化,通过对这种变化的探究找出变量之间的对应法则,从而构建函数模型。函数思想体现了运动变化的、普遍联
4、系的观点。2. 方程和函数的关系。(1)方程和函数的区别。从小学数学到中学数学,数与代数领域经历了从算术到方程再到函数的过程。算术研究具体的确定的常数以及它们之间的数量关系。方程研究确定的常数和未知的常数之间的数量关系。函数研究变量之间的数量关系。方程和函数虽然都是表示数量关系的,但是它们有本质的区别。如二元一次不定方程中的未知数往往是常量,而一次函数中的自变量和因变量一定是变量,因此二者有本质的不同。方程必须有未知数,未知数往往是常量,而且一定用等式的形式呈现,二者缺一不可,如246。而函数至少要有两个变量,两个变量依据一定的法则相对应,呈现的形式可以有解析式、图象法和列表法等,如集合为大于
5、等于1 、小于等于10的整数,集合为小于等于20的正偶数。那么两个集合的数之间的对应关系可以用y2表示,也可以用图象表示,还可以用如下的表格表示。12345678910y2468101214161820人们运用方程思想,一般关注的是通过设未知数如何找出数量之间的相等关系构建方程并求出方程的解,从而解决数学问题和实际问题。人们运用函数思想,一般更加关注变量之间的对应关系,通过构建函数模型并研究函数的一些性质来解决数学问题和实际问题。方程中的未知数往往是静态的,而函数中的变量则是动态的。方程已经有3000多年的历史,而函数概念的产生不过才300年。(2)方程和函数的联系。方程和函数虽然有本质的区别
6、,但是它们同属代数领域,也有密切的联系。如二元一次不定方程abyc0和一次函数ykb,如果方程的解在实数范围内,函数的定义域和值域都是实数。那么方程abyc0经过变换可转化为y ,它们在直角坐标系里画出来的图象都是一条直线。因此,可以说一个二元一次方程对应一个一次函数。如果使一次函数ykb中的函数值等于0,那么一次函数转化为kb0,这就是一元一次方程。因此,可以说求这个一元一次方程的解,实际上就是求使函数值为0的自变量的值,或者说求一次函数图象与轴交点的横坐标的值。一般地,就初等数学而言,如果令函数值为0,那么这个函数就可转化为含有一个未知数的方程;求方程的解,就是求使函数值为0的自变量的值,
7、或者说求函数图象与轴交点的横坐标的值。3. 方程和函数思想的重要意义。16世纪以前,人们主要是应用算术和方程方法解决现实生活中的各种实际问题,方程与算术相比,由于未知数参与了等量关系式的构建,更加便于人们理解问题、分析数量关系并构建模型,因而方程在解决以常量为主的实际问题中发挥了重要作用。到了17世纪,随着社会的发展,传统的研究常量的算术和方程已经不能解决以探究两个变量之间的关系为主的经济、科技、军事等领域的重要问题,这时函数便产生了。函数为研究运动变化的数量之间的依存、对应关系和构建模型带来了方便,从而能够解决比较复杂的问题。概括地说,方程和函数思想是中小学数学,尤其是中学数学的重要内容之一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 思想 方法 梳理
限制150内