相似三角形证明技巧.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《相似三角形证明技巧.docx》由会员分享,可在线阅读,更多相关《相似三角形证明技巧.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、时间段授课内容一证比例式与乘积式的方法二辅助线作法三例题讲解四小结与练习相似三角形相关证明强化 一、相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础 二、相似三角形(1)三角形相似的条件: ; ; .三、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.四、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线
2、型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;a)已知一对等角找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似 b)己知两边对应成比例找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 c)己知一个直角 找另一角 两角对应相等,两三角形相似 找两边对应成比例 判定定理1或判定定理4d)有等腰关系 找顶角对应相等 判定定理1 找底角对应相等 判定定理1
3、 找底和腰对应成比例 判定定理3 e)相似形的传递性 若12,23,则13七、证比例式和等积式的方法:对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等若比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移”(必要时需添辅助线),使其分别构成两个相似三角形来证明 可用口诀: 遇等积,改等比,横看竖看找关系; 三点定形用相似,三点共线取平截; 平行线,转比例,等线等比来代替; 两端各自找联系,可用射影和园幂图5AEFBDGCH例1如图5在ABC中,AD、BE分别是BC、AC边上的高,DFAB于F,交AC的延长线于H,交BE于G,求证:(1)FG / FAF
4、B / FH (2)FD是FG与FH的比例中项1说明:证明线段成比例或等积式,通常是借证三角形相似找相似三角形用三点定形法(在比例式中,或横着找三点,或竖着找三点),若不能找到相似三角形,应考虑将比例式变形,找等积式代换,或直接找等比代换例2如图6,ABCD中,E是BC上的一点,AE交BD于点F,已知BE:EC3:1, CADBEF图6 SFBE18,求:(1)BF:FD (2)SFDA 2说明:线段BF、FD三点共线应用平截比定理由平行四边形得出两线段平行且相等,再由“平截比定理”得到对应线段成比例、三角形相似;由比例合比性质转化为所求线段的比;由面积比等于相似比的平方,求出三角形的面积 B
5、EACDMN例3如图7在ABC中,AD是BC边上的中线,M是AD的中点,CM的延长线交AB于N求:AN:AB的值; 3说明:求比例式的值,可直接利用己知的比例关系或是借助己知条件中的平行线,找等比过渡当已知条件中的比例关系不够用时,还应添作平行线,再找中间比过渡ABCEDGF例4如图8在矩形ABCD中,E是CD的中点,BEAC交AC于F,过F作FGAB交AE于G求证:AG 2AFFC 4说明:证明线段的等积式,可先转化为比例式,再用等线段替换法,然后利用“三点定形法”确定要证明的两个三角形相似、AEBDMCF例5如图在ABC中,D是BC边的中点,且ADAC,DEBC,交AB于点E,EC交AD于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 三角形 证明 技巧
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内