对数与对数运算 第1课时 教案(人教A版必修1).doc





《对数与对数运算 第1课时 教案(人教A版必修1).doc》由会员分享,可在线阅读,更多相关《对数与对数运算 第1课时 教案(人教A版必修1).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.2 对数函数2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考
2、”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;
3、让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性.重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用.教学难点:对数概念的理解,对数运算性质的推导及应用.课时安排3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a亿元,如果每
4、年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?抽象出:1.()4?()x0.125x=?2.(1+8%)x=2x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数引出对数的概念,教师板书课题:对数与对数运算(1).思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数引出对数的概念,教师板书课题:对数与对数运算(1).推进新课新知探究提出问题(对于课本P572.1.2的例8)利用计算机作出函数y=131.0
5、1x的图象.从图象上看,哪一年的人口数要达到18亿、20亿、30亿?如果不利用图象该如何解决,说出你的见解?即=1.01x,=1.01x,=1.01x,在这几个式子中,x分别等于多少?你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题,回忆计算机作函数图象的方法,抓住关键点.对问题,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题,定义一种新的运算.对问题,借助,类比到一般的情形.讨论结果:如图2-2-1-1.图2-2-1-1在所作的图象上,取点P,测出点P的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横
6、坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.=1.01x,=1.01x,=1.01x,在这几个式子中,要求x分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若=1.01x,则x称作以1.01为底的的对数.其他的可类似得到,这种运算叫做对数运算.一般性的结论就是对数的定义:一般地,如果a(a0,a1)的x次幂等于N,就是ax=N,那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.有了对数的定义,前面问题的x就
7、可表示了:x=log1.01,x=log1.01,x=log1.01.由此得到对数和指数幂之间的关系:aNb指数式ab=N底数幂指数对数式logaN=b对数的底数真数对数例如:42=162=log416;102=1002=log10100;4=2=log42;10-2=0.01-2=log100.01提出问题为什么在对数定义中规定a0,a1?根据对数定义求loga1和logaa(a0,a1)的值.负数与零有没有对数?=N与logaab=b(a0,a1)是否成立?讨论结果:这是因为若a0,则N为某些值时,b不存在,如log(2);若a=0,N不为0时,b不存在,如log03,N为0时,b可为任意
8、正数,是不唯一的,即log00有无数个值;若a=1,N不为1时,b不存在,如log12,N为1时,b可为任意数,是不唯一的,即log11有无数个值.综之,就规定了a0且a1.loga1=0,logaa=1.因为对任意a0且a1,都有a0=1,所以loga1=0.同样易知:logaa=1.即1的对数等于0,底的对数等于1.因为底数a0且a1,由指数函数的性质可知,对任意的bR,ab0恒成立,即只有正数才有对数,零和负数没有对数.因为ab=N,所以b=logaN,ab=a=N,即a=N.因为ab=ab,所以logaab=b.故两个式子都成立.(a=N叫对数恒等式) 思考我们对对数的概念和一些特殊的
9、式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗?活动:同学们阅读课本P68的内容,教师引导,板书.解答:常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N的常用对数log10N简记作lgN.例如:log105简记作lg5;log103.5简记作lg3.5.自然对数:在科学技术中常常使用以无理数e=2.718 28为底的对数,以e为底的对数叫自然对数,为了简便,N的自然对数logeN简记作lnN.例如:loge3简记作ln3;loge10简记作ln10.应用示例思路1例1将下列指数式写成对数式,对数式写成指数式:(1)54=625;
10、(2)2-6=;(3)()m=5.73;(4)log16=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数.对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底的对数.对(3)根据指数式与对数式的关系,m在指数位置上,m是以为底5.73的对数.对(4)根据指数式与对数式的关系,16在真数位置上,16是的-4次幂.对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂.对(6)根据指
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对数与对数运算 第1课时 教案人教A版必修1 对数 运算 课时 教案 人教 必修

限制150内