《高中数学常用公式及常用结论》.doc
《《高中数学常用公式及常用结论》.doc》由会员分享,可在线阅读,更多相关《《高中数学常用公式及常用结论》.doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学常用公式及常用结论1. 元素与集合的关系,.2.德摩根公式 .3.包含关系4.容斥原理. 5集合的子集个数共有 个;真子集有1个;非空子集有 1个;非空的真子集有2个.6.二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式.7.解连不等式常有以下转化形式.8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内,等价于,或且,或且.9.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a0时,若,则;,.(2)当a0)(1),则的周期T=a;(2),或,或,或,则的周期
2、T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.30.分数指数幂 (1)(,且).(2)(,且).31根式的性质(1).(2)当为奇数时,;当为偶数时,.32有理指数幂的运算性质(1) .(2) .(3).注: 若a0,p是一个无理数,则ap表示一个确定的实数上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式 .34.对数的换底公式 (,且,且, ).推论 (,且,且, ).35对数的四则运算法则若a0,a1,M0,N0,则(1);(2) ;(3).36.设函数,记.若的定义域为,则,且;若的值域为
3、,则,且.对于的情形,需要单独检验.37. 对数换底不等式及其推广 若,则函数 (1)当时,在和上为增函数., (2)当时,在和上为减函数.推论:设,且,则(1).(2).38. 平均增长率的问题如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.39.数列的同项公式与前n项的和的关系( 数列的前n项的和为).40.等差数列的通项公式;其前n项和公式为.41.等比数列的通项公式;其前n项的和公式为或.42.等比差数列:的通项公式为;其前n项和公式为.43.分期付款(按揭贷款) 每次还款元(贷款元,次还清,每期利率为).44常见三角不等式(1)若,则.(2) 若,则.(3) .45.
4、同角三角函数的基本关系式 ,=,.46.正弦、余弦的诱导公式(n为偶数)(n为奇数)(n为偶数)(n为奇数) 47.和角与差角公式 ;.(平方正弦公式);.=(辅助角所在象限由点的象限决定, ).48.二倍角公式 .49. 三倍角公式 .50.三角函数的周期公式 函数,xR及函数,xR(A,为常数,且A0,0)的周期;函数,(A,为常数,且A0,0)的周期.51.正弦定理.52.余弦定理;.53.面积定理(1)(分别表示a、b、c边上的高).(2).(3).54.三角形内角和定理 在ABC中,有.55. 简单的三角方程的通解 . .特别地,有. .56.最简单的三角不等式及其解集 . . .
5、.57.实数与向量的积的运算律设、为实数,那么(1) 结合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)第二分配律:(a+b)=a+b.58.向量的数量积的运算律:(1) ab= ba (交换律);(2)(a)b= (ab)=ab= a(b);(3)(a+b)c= a c +bc.59.平面向量基本定理 如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1、2,使得a=1e1+2e2不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底60向量平行的坐标表示 设a=,b=,且b0,则ab(b0).53. a与b的数量积(或内积)ab
6、=|a|b|cos 61. ab的几何意义数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos的乘积62.平面向量的坐标运算(1)设a=,b=,则a+b=.(2)设a=,b=,则a-b=. (3)设A,B,则.(4)设a=,则a=.(5)设a=,b=,则ab=.63.两向量的夹角公式(a=,b=).64.平面两点间的距离公式 =(A,B).65.向量的平行与垂直 设a=,b=,且b0,则A|bb=a .ab(a0)ab=0.66.线段的定比分公式 设,是线段的分点,是实数,且,则().67.三角形的重心坐标公式 ABC三个顶点的坐标分别为、,则ABC的重心的坐标是.68.点的平移公式
7、 .注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.69.“按向量平移”的几个结论(1)点按向量a=平移后得到点.(2) 函数的图象按向量a=平移后得到图象,则的函数解析式为.(3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.(4)曲线:按向量a=平移后得到图象,则的方程为.(5) 向量m=按向量a=平移后得到的向量仍然为m=.70. 三角形五“心”向量形式的充要条件设为所在平面上一点,角所对边长分别为,则(1)为的外心.(2)为的重心.(3)为的垂心.(4)为的内心.(5)为的的旁心.71.常用不等式:(1)(当且仅当ab时取“=”号)(2)(当且仅
8、当ab时取“=”号)(3)(4)柯西不等式(5).72.极值定理已知都是正数,则有(1)若积是定值,则当时和有最小值;(2)若和是定值,则当时积有最大值.推广 已知,则有(1)若积是定值,则当最大时,最大;当最小时,最小.(2)若和是定值,则当最大时, 最小;当最小时, 最大.73.一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.;.74.含有绝对值的不等式 当a 0时,有.或.75.无理不等式(1) .(2).(3).76.指数不等式与对数不等式 (1)当时,; .(2)当时,;77.斜率公式 (、).78.直线的五种方程
9、(1)点斜式 (直线过点,且斜率为)(2)斜截式 (b为直线在y轴上的截距).(3)两点式 ()(、 ().(4)截距式 (分别为直线的横、纵截距,)(5)一般式 (其中A、B不同时为0).79.两条直线的平行和垂直 (1)若,;.(2)若,且A1、A2、B1、B2都不为零,;80.夹角公式 (1).(,,)(2).(,).直线时,直线l1与l2的夹角是.81. 到的角公式 (1).(,,)(2).(,).直线时,直线l1到l2的角是.82四种常用直线系方程 (1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数(2)共点直线系方程
10、:经过两直线,的交点的直线系方程为(除),其中是待定的系数(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程与直线平行的直线系方程是(),是参变量(4)垂直直线系方程:与直线 (A0,B0)垂直的直线系方程是,是参变量83.点到直线的距离 (点,直线:).84. 或所表示的平面区域设直线,则或所表示的平面区域是:若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.85. 或所表示的平面区域设曲线(),则或所表示的平面区域是:所
11、表示的平面区域上下两部分;所表示的平面区域上下两部分. 86. 圆的四种方程(1)圆的标准方程 .(2)圆的一般方程 (0).(3)圆的参数方程 .(4)圆的直径式方程 (圆的直径的端点是、).87. 圆系方程(1)过点,的圆系方程是,其中是直线的方程,是待定的系数(2)过直线:与圆:的交点的圆系方程是,是待定的系数(3) 过圆:与圆:的交点的圆系方程是,是待定的系数88.点与圆的位置关系点与圆的位置关系有三种若,则点在圆外;点在圆上;点在圆内.89.直线与圆的位置关系直线与圆的位置关系有三种:;.其中.90.两圆位置关系的判定方法设两圆圆心分别为O1,O2,半径分别为r1,r2,;.91.圆
12、的切线方程(1)已知圆若已知切点在圆上,则切线只有一条,其方程是 .当圆外时, 表示过两个切点的切点弦方程过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线(2)已知圆过圆上的点的切线方程为;斜率为的圆的切线方程为.92.椭圆的参数方程是.93.椭圆焦半径公式 ,.94椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.95. 椭圆的切线方程 (1)椭圆上一点处的切线方程是. (2)过椭圆外一点所引两条切线的切点弦方程是. (3)椭圆与直线相切的条件是.96.双曲线的焦半径公式,.97.
13、双曲线的内外部(1)点在双曲线的内部.(2)点在双曲线的外部.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:. (2)若渐近线方程为双曲线可设为. (3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,焦点在y轴上).99. 双曲线的切线方程 (1)双曲线上一点处的切线方程是. (2)过双曲线外一点所引两条切线的切点弦方程是. (3)双曲线与直线相切的条件是.100. 抛物线的焦半径公式抛物线焦半径.过焦点弦长.101.抛物线上的动点可设为P或 P,其中 .102.二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是.103.抛物线的内外部(1)
14、点在抛物线的内部.点在抛物线的外部.(2)点在抛物线的内部.点在抛物线的外部.(3)点在抛物线的内部.点在抛物线的外部.(4) 点在抛物线的内部.点在抛物线的外部.104. 抛物线的切线方程(1)抛物线上一点处的切线方程是. (2)过抛物线外一点所引两条切线的切点弦方程是. (3)抛物线与直线相切的条件是.105.两个常见的曲线系方程(1)过曲线,的交点的曲线系方程是(为参数).(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 或(弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率). 107.圆锥曲线的两类对称问题(1
15、)曲线关于点成中心对称的曲线是.(2)曲线关于直线成轴对称的曲线是.108.“四线”一方程 对于一般的二次曲线,用代,用代,用代,用代,用代即得方程,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.110证明直线与平面的平行的思考途径(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.111证明平面与平面平行的思考途径(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学常用公式及常用结论 高中数学 常用 公式 结论
限制150内