高中数学的基础知识.doc
《高中数学的基础知识.doc》由会员分享,可在线阅读,更多相关《高中数学的基础知识.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学常用公式及常用结论1. 元素与集合的关系,.2.德摩根公式 .3.包含关系4.容斥原理. 5集合的子集个数共有 个;真子集有1个;非空子集有 1个;非空的真子集有2个.6.二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式.7.解连不等式常有以下转化形式.8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内,等价于,或且,或且.9.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a0时,若,则;,.(2)当a0)(1),则的周期T=a;(2),或,或,或,则的周期
2、T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.30.分数指数幂 (1)(,且).(2)(,且).31根式的性质(1).(2)当为奇数时,;当为偶数时,.32有理指数幂的运算性质(1) .(2) .(3).注: 若a0,p是一个无理数,则ap表示一个确定的实数上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式 .34.对数的换底公式 (,且,且, ).推论 (,且,且, ).35对数的四则运算法则若a0,a1,M0,N0,则(1);(2) ;(3).36.设函数,记.若的定义域为,则,且;若的值域为
3、,则,且.对于的情形,需要单独检验.37. 对数换底不等式及其推广 若,则函数 (1)当时,在和上为增函数., (2)当时,在和上为减函数.推论:设,且,则(1).(2).38. 平均增长率的问题如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.39.数列的同项公式与前n项的和的关系( 数列的前n项的和为).40.等差数列的通项公式;其前n项和公式为.41.等比数列的通项公式;其前n项的和公式为或.42.分期付款(按揭贷款) 每次还款元(贷款元,次还清,每期利率为).43常见三角不等式(1)若,则.(2) 若,则.(3) .44.同角三角函数的基本关系式 ,=,.45.正弦、余弦
4、的诱导公式(n为偶数)(n为奇数)(n为偶数)(n为奇数) 45.和角与差角公式 ;.(平方正弦公式);.=(辅助角所在象限由点的象限决定, ).46.二倍角公式 .47.三角函数的周期公式 函数,xR及函数,xR(A,为常数,且A0,0)的周期;函数,(A,为常数,且A0,0)的周期.48.正弦定理.49.余弦定理;.50.面积定理(1)(分别表示a、b、c边上的高).(2).(3).51.三角形内角和定理 在ABC中,有.52. 简单的三角方程的通解 . .特别地,有. .53.实数与向量的积的运算律设、为实数,那么(1) 结合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)
5、第二分配律:(a+b)=a+b.54.向量的数量积的运算律:(1) ab= ba (交换律);(2)(a)b= (ab)=ab= a(b);(3)(a+b)c= a c +bc.55.平面向量基本定理 如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1、2,使得a=1e1+2e2不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底56向量平行的坐标表示 设a=,b=,且b0,则ab(b0).57. a与b的数量积(或内积)ab=|a|b|cos 58. ab的几何意义数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos的乘积59.平面
6、向量的坐标运算(1)设a=,b=,则a+b=.(2)设a=,b=,则a-b=. (3)设A,B,则.(4)设a=,则a=.(5)设a=,b=,则ab=.60.两向量的夹角公式(a=,b=).61.平面两点间的距离公式 =(A,B).62.向量的平行与垂直 设a=,b=,且b0,则A|bb=a .ab(a0)ab=0.63.三角形的重心坐标公式 ABC三个顶点的坐标分别为、,则ABC的重心的坐标是.64.点的平移公式 .注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.65.“按向量平移”的几个结论(1)点按向量a=平移后得到点.(2) 函数的图象按向量a=平移后得到图象,
7、则的函数解析式为.(3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.(4)曲线:按向量a=平移后得到图象,则的方程为.(5) 向量m=按向量a=平移后得到的向量仍然为m=.66. 三角形五“心”向量形式的充要条件设为所在平面上一点,角所对边长分别为,则(1)为的外心.(2)为的重心.(3)为的垂心.(4)为的内心.(5)为的的旁心.67.常用不等式:(1)(当且仅当ab时取“=”号)(2)(当且仅当ab时取“=”号)(3)(4)柯西不等式(5).68.极值定理已知都是正数,则有(1)若积是定值,则当时和有最小值;(2)若和是定值,则当时积有最大值.推广 已知,则有(1)若积是
8、定值,则当最大时,最大;当最小时,最小.(2)若和是定值,则当最大时, 最小;当最小时, 最大.69.一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.;.70.含有绝对值的不等式 当a 0时,有.或.71.无理不等式(1) .(2).(3).72.指数不等式与对数不等式 (1)当时,; .(2)当时,;73.斜率公式 (、).74.直线的五种方程 (1)点斜式 (直线过点,且斜率为)(2)斜截式 (b为直线在y轴上的截距).(3)两点式 ()(、 ().(4)截距式 (分别为直线的横、纵截距,)(5)一般式 (其中A、B不同时
9、为0).75.两条直线的平行和垂直 (1)若,;.(2)若,且A1、A2、B1、B2都不为零,;76.夹角公式 (1).(,,)(2).(,).直线时,直线l1与l2的夹角是.77. 到的角公式 (1).(,,)(2).(,).直线时,直线l1到l2的角是.78四种常用直线系方程 (1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中是待定的系数(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程与直线平行的直线系方程是(),是参变量(4)垂直直线系
10、方程:与直线 (A0,B0)垂直的直线系方程是,是参变量79.点到直线的距离 (点,直线:).80. 或所表示的平面区域设直线,则或所表示的平面区域是:若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.81. 或所表示的平面区域设曲线(),则或所表示的平面区域是:所表示的平面区域上下两部分;所表示的平面区域上下两部分. 82. 圆的四种方程(1)圆的标准方程 .(2)圆的一般方程 (0).(3)圆的参数方程 .(4)圆的直径式方程 (圆的直径的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 基础知识
限制150内