二次函数的图像和性质教案(共33页).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二次函数的图像和性质教案(共33页).docx》由会员分享,可在线阅读,更多相关《二次函数的图像和性质教案(共33页).docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数的图像和性质适用学科初中数学适用年级初中三年级适用区域通用课时时长(分钟)60知识点二次函数的定义;二次函数的图像;二次函数的性质。教学目标1. 理解二次函数的有关概念2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质教学重点会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题教学难点熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题教学过程一、 课堂导入同学首先在演算本上画出一次函数y=x+1的图像,利用列表、描点、连线的方式,然后使用同样的方法画出y2x2的图像,并根据图像谈论他的性质.二、复习预习二次函数是中考
2、的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查. 三、知识讲解考点1形如:yax2bxc(a、b、c是常数,a0)那么y叫做x的二次函数,它常用的三种基本形式。一般式:yax2bxc(a0)顶点式:ya(xh)2k(a0)交点式:ya(xx1)(xx2)( a0,x1、x2是图象与x轴交点的横坐标)考点2二次函数的图象与性质二次函数yax2bxc(a0)的图象是以()为顶点,以直线y为对称轴的抛物线。在a
3、0时,抛物线开口向上,在对称轴的左侧,即x时,y随x的增大而减小;在对称轴的右侧,即当x时,y随着x的增大而增大。在a0时,抛物线开口向下,在对称轴的左侧,即x时,y随着x的增大而增大。在对称轴的右侧,即当x时,y随着x的增大而减小。考点3二次函数取得最值点当a0,在x时,y有最小值,y最小值,当a0,在x时, y有最大值,y最大值。四、例题精析考点一二次函数的图象及性质例1 (1)二次函数y3x26x5的图象的顶点坐标是() A(1,8) B(1,8)C(1,2) D(1,4)(2)已知抛物线yax2bxc(a0)的对称轴为直线x1,且经过点(1,y1),(2,y2),试比较y1和y2的大小
4、:y1_y2.(填“”“”或“”) 【规范解答】(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求1,8,二次函数y3x26x5的图象的顶点坐标是(1,8)故选A.(2)点(1,y1),(2,y2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y1,y2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可设抛物线经过点(0,y3),抛物线对称轴为直线x1,点(0,y3)与点(2,y2)关于直线x1对称y3y2.a0,当x1时,y随x的增大而减小y1y3.y1y2.答案:(1)A(2)考点二利用二次函数图象判断a,b,c的符号例2 】如图,是二次函数yax2bxc(
5、a0)的图象的一部分,给出下列命题:abc0;b2a;ax2bxc0的两根分别为3和1;a2bc0.其中正确的命题是_(只要求填写正确命题的序号)【规范解答】:由图象可知过(1,0),代入得到abc0;根据1,推出b2a;根据图象关于对称轴对称,得出与x轴的交点是(3,0),(1,0);由a2bca2bab3b0,根据结论判断即可答案:考点三 二次函数图象的平移例3二次函数y2x24x1的图象怎样平移得到y2x2的图象()A向左平移1个单位,再向上平移3个单位B向右平移1个单位,再向上平移3个单位C向左平移1个单位,再向下平移3个单位D向右平移1个单位,再向下平移3个单位【规范解答】首先将二次
6、函数的解析式配方化为顶点式,然后确定如何平移,即y2x24x12(x1)23,将该函数图象向左平移1个单位,再向下平移3个单位就得到y2x2的图象答案:C考点四 确定二次函数的解析式例4如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线yax2bxc恰好经过x轴上A,B两点(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式【规范解答】(1)由抛物线的对称性可知AEBE.AODBEC.OAEBEA.设菱形的边长为2m,在RtAOD中,m2()2(2m)2,解得m1.DC2,OA1,OB3.A,B,C三点的坐标分别为(1,0),(3,0),(2,)(2)设
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 图像 性质 教案 33
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内